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1 Introduction and Motivation

This paper considers some important inference issues that arise in the analysis of nearly cointegrated

processes in the presence of highly persistent cointegrating errors whose variability is only a small

fraction of the variance of the original variables. Equivalently, in the vector error correction (VEC)

representation of the cointegrated system, the error correction term is near-integrated with low

signal-to-noise ratio. Typical examples of this setup include models that study the unbiasedness

of forward and futures prices (exchange rates, interest rates, commodity prices) for the expected

future spot values. For instance, spot and one-month forward exchange rates trace each other very

closely and are virtually indistinguishable from each other as illustrated in the left panel of Figure

1 for the British pound (BP), German mark (DM), Swiss franc (SF) and Canadian dollar (CD) —

all against the US dollar. And yet, the spot-forward spread (the difference between the two series)

is characterized by high persistence which becomes visible when plotted in isolation in the right

panel of Figure 1. In fact, a formal unit root test on the spot-forward spread often cannot reject

the null hypothesis of a lack of cointegration. The heuristic reason for this is that the spot-forward

spread has a tiny variance compared to the variability of the individual variables and this prevents

its near random walk component from forcing spot and forward rates to drift apart in the long

run. Similar arguments apply to the time series behavior of cash and futures prices of other asset

classes, such as commodities or bond yields.

Figure 1 about here

To accommodate this empirical regularity without compromising the integrity of the cointe-

grating system, we model this component as a dampened (stochastically bounded) near unit root

process. More generally, this parameterization proves to be a useful device in reconciling the in-

ternal consistency of the statistical behavior with the widely-held belief that many economic and

financial time series are driven by a slowly moving, low-frequency persistent component (Bansal

and Yaron, 2004; Gourieroux and Jasiak, 2020;1 Phillips and Lee, 2013; among others).2 Consider,

for instance, the unobserved component (local level) model

xt = µt + ut,

µt = ρµt−1 + τξt,

1Gourieroux and Jasiak (2020) employ a model similar to ours in order to explain the long-run predictability
puzzle, whereas we focus primarily on explaining puzzles involving spot and forward rates that move very closely
together, and yet are barely cointegrated according to traditional cointegration tests.

2Müller and Watson (2008, 2018) provide a comprehensive analytical framework for studying low-frequency move-
ments and co-movements in economic and financial time series. In this paper, we consider the possibility that the
low-frequency component is not readily detectable, as the explosive behavior arising from its high persistence is offset
by its asymptotically vanishing variability.
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where µt is a highly persistent and possibly unit root component (with ρ near 1), ut and ξt are

mutually uncorrelated white noise disturbances with variance σ2, and τ is the signal-to-noise ratio.

The observed variable xt could be consumption growth, dividend growth or equity returns and

the long-run risks associated with µt+1, which is largely interpreted as capturing the common

variation in real activity (Bansal and Yaron, 2004), play a crucial role in explaining the equity

premium puzzle. While the above representation is theoretically appealing, the empirical evidence

on the existence of such a long-run component in stock returns is rather weak. There are two main

questions that drive a wedge between the theoretical setup and the empirical justification of these

low-frequency components. First, how come we do not detect this persistence in the data? And

second, how can we reconcile the statistical behavior of the model and the data as the sample size

increases? After all, the persistent component µt has to dominate the dynamics of the observed

series as the number of time series observations grows.

To reconcile this tension, it is convenient to adopt a dual localization and model µt as a damp-

ened near-unit root process (see Gospodinov, 2009). More specifically, let µt = ρTµt−1 + τT ξt

denote the low-frequency component. The dual localization involves (a) a local-to-unity parame-

terization ρT = 1 + c/T for some fixed constant c ≤ 0, and (b) a local-to-zero parameterization for

the signal-to-noise ratio τT = λ/
√
T for some fixed constant λ > 0. This dual localization proves

to be instrumental in producing a process that is stochastically bounded and hence consistent with

both statistical and economic theory. Unlike regular near-unit root processes that are of order

Op(T
1/2), the local-to-zero variance localization dampens the stochastic trend behavior of xt and

keeps it stochastically bounded (Op(1)). The dual localization removes the economically unap-

pealing possibility that the low-frequency component can wander off and induce non-stationarity

in asset returns or consumption growth. The persistent and noise components of the model now

have comparable orders of magnitude as both µt and the rest of the variables are stochastically

bounded. While this statistical device renders the model congruent, the observed stock returns at

the monthly or quarterly frequency are still overwhelmed by noise and the empirical detection of

this small low-frequency component remains elusive.

With this background in mind, the paper derives the theoretical implications of the simulta-

neous presence of high persistence, low variability and endogeneity of the cointegrating errors for

the concept of cointegration, the properties of cointegrating regressions, estimation and testing in

vector error-correction models, etc. More specifically, we develop the appropriate theory (rate of

convergence and asymptotic distributions) for the estimators in VEC and conditional VEC models

(Phillips, 1991; Johansen, 1992; Boswijk, 1994) when the error correction term is parameterized as

a dampened near unit root process (local-to-unity process with local-to-zero variance). In doing

this, we combine the literatures on near cointegration (Zivot, 2000; Jansson and Haldrup, 2002;
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Pesavento, 2004; Elliott, Jansson and Pesavento, 2005) and near zero variance regressors (Torous

and Valkanov, 2000; Moon, Rubia and Valkanov, 2004; Gospodinov, 2009; Deng, 2014; Gourieroux

and Jasiak, 2020). This double local parameterization of the persistence and variance of the cointe-

gration errors provides a powerful tool for deriving limiting results by capturing the salient features

of the data in the empirical examples. One important result that emerges from our analysis is

that the estimator in the conventional VEC models is characterized by large bias, a reduced rate

of convergence and a highly dispersed asymptotic distribution, while its conditional counterpart

enjoys a substantially improved asymptotic behavior. The paper provides a detailed investigation

of the numerical properties of the estimators in unconditional and conditional VEC models and

the empirical size and power of tests for cointegration based on the corresponding test statistics.

The practical importance of the analytical results is demonstrated in the context of exchange rate

models.

The rest of the paper is organized as follows. Section 2 introduces the analytical setup, modeling

assumptions and appropriate limits. It also presents the main representations that characterize the

asymptotic behavior of the estimators and their corresponding t-tests. Section 3 contains simulation

results while Section 4 reports the results from the empirical application for spot and forward

exchange rates. Section 5 concludes.

2 Model and Main Results

2.1 Assumptions and Parameterization

First, we discuss the model setup, assumptions and the proposed dual local parameterization.

Suppose that (x′t, yt)
′ is a ((k + 1)× 1) vector generated by the triangular system3

xt = ψx + φxt+ ux,t (1)

yt = ψy + φyt+ γ′xt + uy,t

and (
(1− L)ux,t

(1− ρTL)uy,t

)
=

(
vx,t
τT vy,t

)
with

A (L) vt = εt

for t = 1, ..., T . We make the following assumptions.

Assumption A Assume that max−p≤t≤0

∥∥∥(u′x,t, uy,t)′∥∥∥ = Op (1), where ‖·‖ is the Euclidean norm.

3For notational convenience, we suppress the dependence of ut, xt, and yt on T.
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Assumption B Assume that A(L) = Ik+1−
∑p

i=1AiL
i is a matrix polynomial of a finite (known)

order p in the lag operator L, with roots that lie outside the unit circle.

Assumption C Assume that εt = (ε′x,t, εy,t)
′ is a homoskedastic martingale difference sequence

with a variance matrix Σ, 0 < ‖Σ‖ <∞, and finite fourth moments, maxiE(ε4it) <∞.

Our model resembles the standard triangular model for cointegration (Phillips, 1991; see also

Engle and Granger, 1987; Park and Phillips, 1988, 1989; Stock and Watson, 1993; Park, 1992;

among many others) but we allow the error in the cointegration regression to be persistent, yet

still bounded. For clarity of exposition, the analytical results below are presented for the case of no

deterministic terms in model (1); i.e., ψx = 0, ψy = 0, φx = 0 and φy = 0. The generalization to

deterministic terms is straightforward to obtain at the expense of additional notation (see Section

2.2 for further discussion).

Assumptions A-C are the same as in Elliott, Jansson and Pesavento (2005). Assumption A

states that the initial values are asymptotically negligible while Assumption B implies stationarity.

Assumption C ensures that εt satisfies the Functional Central Limit Theorem (FCLT) so that

1√
T

[Tr]∑
s=1

εs ⇒ Σ1/2W (r),

where W (r) is a standard vector Brownian motion, ⇒ signifies weak convergence and [·] denotes
the greatest lesser integer function. Furthermore, Assumptions A-C imply that vt = A (L)−1 εt has

the following limit
1√
T

[Tr]∑
s=1

vs ⇒ Ω1/2W (r) ,

where Ω = A (1)−1 ΣA (1)−1
′
is the spectral density at frequency zero of vt scaled by 2π, Ω1/2 =(

Ω
1/2
11 0

ω21Ω
−1/2
11 ω

1/2
2.1

)
, ω1/22.1 = ω22−ω21Ω−111 ω12 , and W ′ =

(
W ′1 W2

)
is a vector of independent

standard Brownian motions, partitioned conformably to vx,t and vy,t.

Next, define the scalar θ2 = δ′δ, where δ = Ω
−1/2
11 ω12ω

−1/2
22 denotes a vector containing the

bivariate correlations at frequency zero of each element of vx,t with vy,t. The scalar θ2 represents

the contribution of the right-hand variables in the second equation of (1) and it takes a value of

zero when vx,t are not correlated in the long run with the errors from the cointegration regression.

Assumption D Assume that 0 ≤ θ2 < 1 and Ω11 is non-singular.

Assumption D restricts the squared long-run correlation θ2 to be strictly less than one for

technical reasons (see also Hansen, 1995). Also, the assumption that Ω11 is non-singular implies

that elements of xt are not individually cointegrated. Our next assumption follows Gospodinov
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(2009) and reparameterizes ρT and τT as local-to-unity and local-to-zero sequences to account for

the possibility of highly persistent errors and low signal-to-noise ratio.

Assumption E Assume that ρT = 1 + c/T for some fixed constant c ≤ 0, and τT = λ/
√
T for

some fixed constant λ > 0.

The normalization factors T and T 1/2 for the local-to-unity and local-to-zero parameterizations

are chosen to match the asymptotics of the estimators of ρT and τT . The local-to-zero parameter-

ization has been used in a predictive regression framework by Torous and Valkanov (2000), Moon,

Rubia and Valkanov (2004), Deng (2014) and Gourieroux and Jasiak (2020). In a different context,

Ng and Perron (1997) adopt a similar parameterization to study the effect of low signal-to-noise

ratio of the regressor on the sampling properties of cointegrating vector estimators.

Thus, under our assumptions, both yt and xt in (1) have a unit root but are cointegrated, and

the cointegration error yt − γ′xt is persistent —potentially persistent enough that we would not
detect cointegration with standard tests in small samples. Yet, we have that asymptotically τT

is approaching zero so that the cointegration error remains stochastically bounded even when its

persistence parameter ρT , that drives its dynamics, is near or at unity.

As pointed out in the introduction, the dual localization is key for ensuring that the cointegration

error uy,t = yt − γ′xt is stochastically bounded and hence consistent with both statistical and

economic theory. Unlike regular near-unit root processes that are of order Op(T 1/2), the local-to-

zero variance localization dampens the stochastic trend behavior of uy,t and keeps it stochastically

bounded (Op(1)). More specifically, uy,t converges weakly to an Ornstein-Uhlenbeck process without

any normalization that depends on the sample size:4

uy,t = λT−1/2
t∑
i=1

(1 + c/T )t−ivy,i

⇒ ω
1/2
2.1 λJ12c(r),

where J12c(r) = W12(r) + c
∫ r
0 e

(r−s)cW12(s)ds with W12(r) =
√

θ2

1−θ2 W̃1 (r) +W2 (r), where W̃1 (r)

is an univariate standard Brownian motion independent of W2(r). The dual localization removes

the unappealing possibility for some economic series (spot and forward prices, for example) that

the errors uy,t can wander off and preserves the cointegration between yt and xt.

2.2 Limiting Distributions

We first consider the standard OLS estimator for the cointegration vector γ obtained from the

regression of yt on xt. Theorem 1 below presents the limiting distribution of the estimator γ̂.5

4The proof of this result is provided in the Appendix and follows closely Pesavento (2004).
5For ease of exposition, we follow the usual convention and suppress the (r) from the Brownian motion terms. All

integrals are intended to be between 0 and 1, unless stated otherwise.
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Theorem 1 Under Assumptions A-E, and as T →∞,

√
T (γ̂ − γ0)⇒ Ω

−1/2′
11 ω

1/2
2.1 λ

(∫
W1W

′
1

)−1(∫
W1J12c

)
, (2)

T · SE(γ̂)⇒
[
λ2Ω

−1/2
11

(∫
W1W

′
1

)−1
Ω
−1/2′
11 ω2.1

(∫
J̃212c

)]1/2
, (3)

where J̃12c = J12c−
(∫
W1J12c

)′ (∫
W1W

′
1

)−1
W1, J12c(r) = W12(r)+c

∫ r
0 e

(r−s)cW12(s)ds,W12(r) =√
θ2

1−θ2 W̃1 (r) + W2 (r) and W̃1 (r) and W2(r) are independent univariate standard Brownian mo-

tions.

Proof. See Appendix.

Interestingly, the estimator γ̂ has an asymptotic distribution that resides in between the usual

spurious and cointegration regressions. Unlike spurious regressions, γ̂ is consistent but, in contrast

to the usual cointegration regressions, it is not super-consistent as it has a slower (
√
T ) rate of

convergence. Additionally, while the estimator is consistent, the conventional t-statistic of H0 : γ =

γ0 diverges at rate T
1/2 as in a spurious regression. This can be easily seen from the results in

Theorem 1, i.e.

tγ=γ0 =
(γ̂ − γ0)
SE(γ̂)

=

√
T (γ̂ − γ0)
T · SE(γ̂)

√
T → ±∞

as T → ∞. Note also that an effi cient estimator of γ can be obtained using a control variable
approach (Phillips, 1991).

In what follows, we assume that γ is known which is the case in our empirical application. We

briefly discuss the setup when γ is estimated after we present our main results in Theorems 2 and

3 below. Consider the VEC representation of the model given by(
∆xt
∆yt

)
= (ρ− 1)

(
0k 0
−γ′ 1

)(
xt−1
yt−1

)
+

(
Ik 0
γ′ 1

)(
vx,t
τT vy,t

)
. (4)

Premultiplying byA(L) and usingA(L) = Ik+1−
∑p

i=1AiL
i = Ik+1−

(
A1 +A2L+ ...+ApL

p−1)L =

Ik+1−A∗ (L)L and A (L) = A (1) + (1− L) Ā(L), where Ā(L) is another (p− 1)-order lag polyno-

mial, we obtain(
∆xt
∆yt

)
= (ρ− 1)A (1)

(
0k

uy,t−1

)
+ Ã(L)

(
∆xt−1
∆yt−1

)
+A (L)

(
vx,t

τT vy,t + γ′vx,t

)
,

where Ã(L) = A∗(L) + Ā(L)(ρ− 1)

(
0k 0
−γ′ 1

)
.

Here, we restrict our analysis to a single equation error correction model by imposing that the

first to the second-to-last elements of the last column of A(1) are equal to zero (see our discussion
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after Theorem 2 below); i.e., A (1) =

(
A11(1) 0k
A21 (1) a22(1)

)
. In this case, the conditional ECM for

∆yt is given by

∆yt = (ρ− 1)a22(1)uy,t−1 + Ã21(L)∆xt−1 + ã22(L)∆yt−1 + (A21 (L) + a22(L)γ′)vx,t + a22(L)τT vy,t

or, using that ∆xt = vx,t and τTa22(L)vy,t = τT εy,t −A21 (L) τT∆xt,

∆yt = βuy,t−1 + γ∆xt + π∗1(L)′∆xt−1 + π∗2(L)∆yt−1 + γ′∆xt + τT εy,t,

where β = (ρ−1)a22(1) and π∗1(L) and π∗2(L) are lag polynomials of order p−1 that are functions of

A(L) and Ã(L). Furthermore, define ηt = Σ−1/2εt such that εx,t = Σ
1/2
11 ηx,t and εy,t = σ21Σ

−1/2
11 ηxt+

σ
1/2
2.1 ηyt. Then, substituting ηx,t = Σ

−1/2
11 εx,t and noting that the terms in λ√

T
σ21Σ

−1/2
11 (∆xt − εx,t)

can be expressed in terms of the lags of ∆xt and ∆yt, whose coeffi cients can be absorbed into π∗1(L)

and π∗2(L), the conditional ECM for ∆yt takes the form

∆yt = βuy,t−1 + ϕ∆xt + π1(L)′∆xt−1 + π2 (L) ∆yt−1 + et, (5)

where ϕ = γ′ + τTσ21Σ
−1/2
11 and et = τTσ

1/2
2.1 ηyt.

Notice that given our assumptions, the stationary dependent variable in (5) is explained by a

stationary regressor ∆xt, whose influence is not dominated by uy,t−1, even when uy,t−1 is persistent.

Next, let β̃ be the OLS estimator in the conditional VECM (5), t̃β=β0 be the t-test of H0 : β = β0

and t̃β=0 denote the t-test of the null hypothesis H0 : β = 0 (or ρ = 1).

Theorem 2 Suppose that Assumptions A-E hold. In addition, assume that A12(1) = 0k. Then, as

T →∞,

T
(
β̃ − β0

)
⇒
(∫

J212c

)−1(∫
J12cdW2

)
, (6)

t̃β=β0 ⇒
(∫

J212c

)−1/2(∫
J12cdW2

)
, (7)

t̃β=0 ⇒
(∫

W 2
12

)−1/2(∫
W12dW2

)
, (8)

where J12c(r) and W12(r) are defined in Theorem 1.

Proof. See Appendix.

Theorem 2 shows that the estimator in the conditional error-correction equation converges at

rate T — i.e., it is super-consistent — and has a non-standard distribution which is an implicit

function of the long-run correlation θ2 and c. The asymptotic behavior of the estimator β̃ bears

some similarities to the limiting representations derived in other contexts; see, for example, Hansen
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(1995), Zivot (2000), and Pesavento (2004). As expected, it depends on the long-run correlation θ2

and c. By controlling for ∆xt, we remove the noisy component of the error term and both uy,t−1

and et have shrinking innovations variances, even though uy,t−1 is allowed to be persistent (local to

unity). Importantly, the limiting distributions of the estimator and the t-statistic do not depend

on the signal-to-noise ratio through the localizing constant λ.

The assumption A12(1) = 0k warrants some remarks. It is imposed in this model (see also Zivot,

2000) to ensure thatH0 : β = 0 can be interpreted as a test for cointegration in the conditional ECM

(5) by ignoring the information contained in the marginal model for ∆xt. While this assumption

simplifies the asymptotic representations for T
(
β̃ − β0

)
and t̃β=β0 in Theorem 2, it should be

stressed that the condition A12(1) = 0k is not required for establishing the limiting behavior of the

estimator and the t-test of H0 : β = β0 and the limiting expressions in (6) and (7) can be readily

modified by relaxing this assumption. Of course, this assumption is automatically satisfied in the

case of no seral correlation; i.e., A(L) = Ik+1. For further discussion on the trade-off between the

weak exogeneity assumption in single-equation ECM and the system-based approach to testing for

cointegration, see Elliott, Jansson and Pesavento (p. 36, 2005). These remarks also apply to the

results in Theorem 3 below.

It is often the case that the VECM is defined (for predictive purposes, for instance) as

∆yt = βuy,t−1 + π1(L)′∆xt−1 + π2 (L) ∆yt−1 + ξt, (9)

where ξt = ϕ∆xt + et.6 We refer to model (9) as the unconditional VECM. Let β̂ denote the OLS

estimator in the unconditional VECM, t̂β=β0 be the t-test of H0 : β = β0 based on the estimator

β̂ and t̂β=0 be the t-test of the null hypothesis H0 : β = 0 (or ρ = 1). We then have the following

result.

Theorem 3 Suppose that Assumptions A-E hold. In addition, assume that A12(1) = 0k and γ 6= 0.

Then, as T →∞,

√
T
(
β̂ − β0

)
⇒ λ−1ω

−1/2
2.1 (γ′Ω11γ)1/2

(∫
J212c

)−1(∫
J12cdW̃1 + Λ∗

)
, (10)

t̂β=β0 ⇒
(γ′Ω11γ)1/2

(γ′Γ0,xxγ)1/2

(∫
J212c

)−1/2(∫
J12cdW̃1 + Λ∗

)
, (11)

t̂β=0 ⇒
(γ′Ω11γ)1/2

(γ′Γ0,xxγ)1/2

(∫
W 2
12c

)−1/2(∫
W12cdW̃1 + Λ∗

)
, (12)

6Strictly speaking, the parameters in model (9) should be denoted differently than those in the conditional ECM
(5) since the unconditional model (9) is misspecified as it omits the term ϕ∆xt. For notational simplicity, we do not
index the parameters in the conditional and unconditional specifications in the theoretical part but we do so in the
empirical application.
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where Λ∗ = ω
−1/2
21 λ−1(γ′Ω11γ)−1/2γ′Λy,x, Λy,x =

∑∞
h=1 Γ′h,yx,

Γh =

(
E
(
vx,t−hv

′
x,t

)
E (vx,t−hvy,t)

E
(
vy,t−hv

′
x,t

)
E (vy,t−hvy,t)

)
=

(
Γh,xx Γh,xy
Γh,yx Γh,yy

)
,

W̃1 is an univariate Brownian motion independent of W2, and J12c(r) and W12(r) are defined in

Theorem 1.

Proof. See Appendix.

Unlike the estimator β̃ in the conditional VECM, the estimator β̂ has a slower (root-T ) rate

of convergence and its limiting distribution depends inversely on λ so that low values of λ make

the estimator highly volatile. The asymptotic distributions of the estimator and its t-statistic are

still non-standard. While they are also functionals of Brownian motions as for the estimator in

the conditional VECM, there is a sharp contrast in the limiting behavior of these two estimators

and their corresponding t-tests. In particular, because we are not conditioning on ∆xt, the errors

in the unconditional error correction equation will be serially correlated and there will be extra

parameters for the short- and long-run variances that will enter the asymptotic distribution. When

there is no serial correlation , i.e. A (L) = Ik+1, the limit distribution of the t-statistics in the

unconditional VECM are

t̂β=β0 ⇒
(∫

J212c

)−1/2(∫
J12cdW̃1

)
(13)

and

t̂β=0 ⇒
(∫

W 2
12

)−1/2(∫
W12dW̃1

)
. (14)

For example, when θ2 = 0 (and W12(r) = W2 (r)), the asymptotic distribution of the t-statistic

for H0 : β = 0 in the unconditional VECM reduces to the standard normal distribution while the

limit of the t-test in the conditional VECM is characterized by the Dickey-Fuller distribution.

Table 1 about here

Critical values at the 5% significance level for the limiting distributions of the t-tests t̃β=0 and

t̂β=0 when there is no serial correlation (p = 0) are presented in Table 1. This is the setup of our

empirical example and simulation experiment where these critical values are directly applicable.

They are tabulated for different values of the scalar θ2 that characterizes the degree of endogeneity

in the model and determines implicit weights assigned to the standard normal and Dickey-Fuller

distribution. The critical values for the case with no deterministic terms are obtained from the

asymptotic representations in Theorems 2 and 3. For comparison purposes, we only use the case

when there is no serial correlation and no nuisance parameters that need to be estimated, which is
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also the relevant case in our empirical application. For the cases with deterministic terms in (5) and

(9) (“constant, no trend”and “constant and trend”), the standard Brownian motion is replaced by

its demeaned and detrended analogs. The critical values are obtained by simulation using 200, 000

replications and T = 30, 000.

Finally, while the results in Theorems 2 and 3 assume that the cointegration vector γ is known,

the corresponding asymptotic representations can also be characterized when γ is estimated by

OLS and ûy,t−1 is used in the conditional and unconditional regressions. Despite the more complex

form of these asymptotic distributions, the limiting behavior of the main quantities of interest

is qualitatively unchanged: ûy,t is still stochastically bounded, β̃ is super-consistent and has an

asymptotic distribution that does not depends on λ, and β̂ continues to converge at a slower

(root-T ) rate with a limiting representation that depends on the signal-to-noise ratio.7

3 Simulation Results

To gain further understanding of the combined effect of low signal-to-noise ratio and persistent

cointegration errors, and to quantify the cost of using the unconditional VECM in this context, we

simulate data from a bivariate version of (1) with no serial correlation:

xt = ux,t (15)

yt = γxt + uy,t

and (
(1− L)ux,t

(1− ρTL)uy,t

)
=

(
εx,t
τT εy,t

)
with ρT = 1 + c/T and τT = λ/

√
T . Several values of λ, c, θ2, and T are considered. In each case

we estimate the conditional and unconditional VECM and compute the bias and standard error of

β̃ and β̂ together with the rejection rates for t̃β=0 and t̂β=0 using 100, 000 Monte Carlo replications.

We first choose a value for λ = 0.05 to match the implicit values for λ in the empirical application.

The parameter θ2 is set to 0, 0.3, or 0.7. In the bivariate model, θ2 is the square of the correlation

between εx,t and εy,t, so that we can think of these values for θ2 as corresponding to low, medium

and high degrees of endogeneity. We set c to equal 0,−5, and −10: values that correspond to ρ

between 1 and 0.95 depending on the sample size. All reported tests have a nominal level of 5%.

Table 2 about here

7A sketch of this result is present in the proof for Theorem 1. The limiting results for the t-tests when γ is
estimated follow directly and are available from the authors upon request.
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When c = 0 (ρ = 1) and θ2 = 0, both the conditional and unconditional VEC estimators have

negligible bias and correct size, although the standard error of the unconditional estimator can be

large. As the degree of endogeneity increases, the size of both tests remains close to the nominal

5% level but the estimator from the unconditional regression, β̂, has a large negative bias that

increases as θ2 increases.

For negative values of c (ρ < 1), we move away from the null hypothesis. In this case, we

can see that both the bias and the standard error of β̂ increase. Importantly, the probability of

rejecting the null hypothesis in the conditional VECM correctly increases as ρ moves away from

unity and as the degree of endogeneity increases. By contrast, the rejection probability of the

t-test in the unconditional VECM remains around the 5% nominal level indicating a lack of power.

As Theorem 3 shows, these asymptotic results are driven by the low signal-to-noise ratio: the

asymptotic distribution of the unconditional VECM estimator β̂ and, in particular, its variance8

depend on λ, while the asymptotic distribution of the conditional VECM estimator β̃ is invariant to

the value of λ. This suggests that the bias of the unconditional VECM estimator and the power of

its test for significance will not improve even with large samples. This is in line with the theoretical

results in Theorem 3. For example, the only difference that we observe between sample sizes of 200

and 400 is that, as T gets larger, the unconditional VECM estimates tend to have slightly smaller

standard errors, although they are substantially larger than the standard errors for its conditional

model counterpart.

As Theorem 3 highlights, the performance of the estimators from the unconditional VEC regres-

sion is inversely related to the localizing constant λ. A small value for λ makes the signal-to-noise

negligible and induces high volatility in β̂. To provide further evidence of the effect of λ on the

behavior of the estimators and tests of significance, Table 3 presents results for a bigger value of λ

(λ = 10) that renders the signal-to-noise ratio relatively large.

Table 3 about here

Table 3 reveals that when λ is larger, the estimator based on the unconditional regression

performs better with the bias and standard error of β̂ being much smaller than those for a small

signal-to-noise ratio (λ = 0.05). However, the conditional VECM estimator continues to be more

effi cient which results in non-trivial power for its t-test. In contrast, while the power of the t-test

in the unconditional VECM is improved compared to the case in Table 2, it is still dominated by

the conditional VECM test.
8See the Appendix for details on the asymptotic variance of the estimators.
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4 Empirical Application: Forward Premium Model

The main motivation for the theoretical analysis developed above has been some puzzling results in

the forward premium regression models that link spot currency future returns to current forward

premium, defined as the difference between the forward and spot exchange rates. The main prop-

erties of the data for the British pound (BP), German mark (DM), Swiss franc (SF) and Canadian

dollar (CD) —all against the US dollar —are visualized in Figure 1 in the introduction. The left

charts illustrate the extremely small signal-to-noise ratio of the forward premium regression while

the right panel of charts presents the near-unit root dynamics of the spot-forward spread. These

data features strongly suggest that the conventional forward premium regression attempts to explain

a noisy but stationary dependent variable with a small, but persistent regressor. Consequently, the

estimator is likely to exhibit non-standard finite-sample and asymptotic behavior.

The two regression specifications that we consider are based on the unconditional and condi-

tional VECM, for a cointegrating vector γ = (1,−1)′, and take the following form

∆st = αU + βU (st−1 − ft−1) + ξt, (16)

∆st = αC + βC(st−1 − ft−1) + ϕC∆ft + ut, (17)

where st denotes the log spot exchange rate and ft is its corresponding one-month log forward rate.

The parameters are indexed by U and C to signify their association with the unconditional and

conditional VECM, respectively. Equation (16) has been used extensively in the forward premium

literature folowing Fama (1984),9 but note that to be consistent with our setup and notation in the

methodological section, the error-correction term is defined as (st−1−ft−1) and not as (ft−1−st−1)
as in the forward premium literature. We should also stress that our setup and hypothesis of

interest differ from the tests for forward rate unbiasedness in the forward premium puzzle (for the

analysis of the forward premium puzzle, see Maynard and Phillips, 2001; Gospodinov, 2009; among

others). Specifically, we test β = ρ−1 = 0 whereas the unbiasedness hypothesis is a test of βU = 1.

The data consist of monthly observations for the four exchange rates (BP, DM, SF, CD),

mentioned above, for the period January 1975 —May 2006 and the Japanese yen (JY) for the period

August 1978 —May 2006. The monthly spot rates are constructed by taking the observation on

the last business day of each month (daily mid-market observation from Datastream). One-month

forward rates are constructed from end-of-the month Eurocurrency rates for US, UK, Germany,

Japan, Canada and Switzerland obtained from Datastream, using the covered interest parity.
9The vast majority of this literature does not include lags of ∆st and ∆ft and we follow this tradition. We

have also tried estimating the model with lagged differences included but found the lags to be insignificant (at 5%
significance level) for BP, DM, SF and CD. Even in the JY regression where they are only borderline significant, the
coeffi cients on the lagged ∆st and ∆ft offset each other (with opposite signs and similar magnitude so that the sum
of the coeffi cients is near zero). For this reason, we decided to maintain the specification of the forward premium
regression that is commonly used in practice (with no lags of ∆st and ∆ft).
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Table 4 about here

Table 4 presents the regression estimates and their associated Newey-West standard errors (with

12 lags) from the model specifications (16) and (17), along with the R2 from these regressions. But

the table starts by reporting some salient features of the data that justify our dual parameterization

and the system approach to estimation and inference. The ratio of volatilities between the regressor

(st−1−ft−1) and the dependent variable ∆st in the unconditional VECM is very low (close to zero)

with implied values of λ ranging between 0.026 and 0.052. At the same time, the spot-forward

spread (st−1 − ft−1) is a highly persistent process with AR(1) coeffi cients near one. The unit root
test (augmented Dickey-Fuller test for a model with a drift and 12 lags) cannot reject the null of

a unit root at 5% significance level. This leads to the counter-intuitive conclusion that spot and

forward rates drift apart in the long-run despite being visually indistinguishable from each other

in Figure 1. Overall, the combination of these two data characteristics (low signal-to-noise ratio

and high persistence) highlights the importance of using limiting distributions that are explicit

functions of these parameters.

As our theory and simulation results suggest, the estimate of βU appears to be highly volatile

(large standard error) and thus has a substantial probability of being far away from its implied value

under the null. Given the very low signal-to-noise ratio of this regression model, the explanatory

power of (st−1−ft−1) is very low which is reflected in values of R2 ranging between 0.005 and 0.045
for the different currencies. As Theorem 3 highlights, the precision of these estimates is inversely

related to the localizing constant λ whose proximity to zero makes the signal-to-noise ratio negligibly

small and induces high volatility in the OLS estimate of βU . Since the degree of endogeneity in

this model (measured by the long-run correlation θ2) is somewhat low, the large downward biases

reported in the simulations (for large θ2) are not expected to be an issue here. Instead, the sampling

behavior of the unconditional VECM estimator of βU is driven by the negligible signal-to-noise ratio

and the incompatibility between the dependent and independent variables in terms of both their

scale and persistence.

By contrast, the estimates of βC in model specification (17) are in line with those predicted by

theory (one minus the implied value of the persistence parameter ρ) with significantly reduced vari-

ability. The meaningful improvement in the sampling properties of the estimator in (17) arises from

“balancing”the stationary, but noisy, dependent variable with the inclusion of an additional regres-

sor, ∆ft+1, with similar scale and persistence.10 This recalibrates the signal and noise components

10The traditional definition of an unbalanced regression is that the regressand and the regressor are of different
orders of integration. In our context, there can also be imbalance between the innovation variances, when one is fixed
and the other shrinking, or between the overall scale or magnitude of the regressor and regressand, which depends
jointly on both the integration order and innovation variance. Given these multiple notions of balance, we avoid
the generic use of the term “balanced/unbalanced”regression and instead clarify the notion of “balance/unbalance”
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to put them on a more equal footing.

The OLS estimates of βC vary between 0.036 (Swiss franc) and 0.141 (Japanese yen) that map

well within the spectrum of plausible values for the implied persistence of the forward premium.

Using the critical values in Table 1 for values of θ2 close to zero, these results lend support to the

alternative hypothesis that the estimate of βC is statistically significant (and smaller than 0); i.e.,

the persistent parameter of the forward premium is close to but strictly less than unity.

The large values of R2 for this model provide additional evidence that all relevant information

about ∆st is reflected in the regressors (st−1 − ft−1) and ∆ft. It also reflects the good fit of

our theoretical model to the exchange rate data. The high R2 results from the strong correlation

between ∆st and ∆ft. This, in turn, is an implication of our modelling framework. Specifically, it is

implied by the near-zero variance for st−ft. The small variance of st−ft = st−1−ft−1+(∆st−∆ft)

requires that ∆st and ∆ft are typically close in value (i.e., highly correlated).

In summary, the magnitudes of the estimates from model (16) and their tests for significance

should be interpreted with caution given their highly volatile behavior arising from the low signal-

to-noise ratio of the regressor. On the other hand, model (17) is statistically balanced and its

estimates and statistics are characterized by more appealing sampling properties.

5 Concluding Remarks

In this paper we proposed and studied a model of a nonstationary levels relationship in which the

residual follows a local-unity process with a shrinking innovation variance. This setup captures

empirical applications, such as spot and forward exchange rate and commodity prices, where the

levels relationship appears tight despite a persistent, yet small residual. The asymptotic theory

that we develop in the paper offers some interesting insights. The limiting behavior of the levels

regression lies in between the cointegrating and spurious regression cases. The estimated coeffi cients

remain consistent, but not super-consistent, and their corresponding t-tests diverge with the sample

size.

We also analyzed the vector error-correction specifications of this model. Unfortunately, the

unconditional VEC model is characterized by an imbalance between a small but persistent error

correction term and a large stationary component in its error term. This imbalance is reflected

in a low signal to noise ratio, resulting in highly variable coeffi cient estimates. Conversely, the

conditional VEC specification addresses this imbalance by explicitly controlling for the high variance

component of the residual in the unconditional VECM. This is manifested in a higher signal to noise

ratio and a super-consistent error-correction coeffi cient estimate. The asymptotic distribution is

intended at each point in which we use the term.
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non-standard, but the t-test depends on only a single endogeneity term, which can be consistently

estimated and used to adjust the critical value.

Our simulations confirmed the superiority of the conditional VEC specification. While the

unconditional and conditional VEC models perform similarly in the standard cointegration setting,

the relative performance of the unconditional VECM strongly deteriorates when error variance of

the levels residual is small and persistent. By contrast, the conditional VECM continues to exhibit

excellent size and power properties.

We illustrated the practical relevance of our theoretical results in the context of spot-forward

exchange rate regressions. Our analytical framework rationalizes the otherwise conflicting observa-

tions that (i) the spot and forward rates move closely together and (ii) their difference, the forward

premium, is highly persistent. Common spot return forward premium regressions correspond to

the unconditional VEC model. As predicted by the theory, this regression is imbalanced both in

terms of its persistence and in terms of the magnitude of its innovation variance. Not surprisingly,

the resulting estimates are imprecise with large standard errors. By contrast, the conditional VEC

model produces more precise estimates with tighter standard estimates. Using the conditional

VECM, we can reject the hypothesis of an exact unit root in the spot-forward spread, providing

additional support for the tight levels relationship observed between spot and forward exchange

rates.
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Appendix: Proofs of Main Results

A.1 Preliminary Lemma

Lemma A1. Under Assumptions A-E, we have that

1. Ω
−1/2
11

1

T 2

T∑
t=1

xtx
′
tΩ
−1/2′
11 ⇒

∫
W1W

′
1,

2. Ω
−1/2
11 ω

−1/2
2.1

1

T
3
2

T∑
t=1

xtuy,t ⇒ λ
∫
W1J12c,

3. ω−12.1
1

T

T∑
t=1

u2y,t ⇒ λ2
∫
J212c,

4. ω−1/22.1

1

T
1
2

T∑
t=1

uy,t−1(Σ−1/2εt)⇒ λ
∫
J12cdW,

5. Ω
−1/2
11

1

T

T∑
t=1

xt−1(Σ−1/2εt)⇒
∫
W1dW,

where J12c(r) = W12(r) + c
∫ r
0 e

(r−s)cW12(s)ds, W12(r) =
√

θ2

1−θ2 W̃1 (r) + W2 (r) and W̃1 (r) is a

univariate standard Brownian motion.

Proof. Under our assumptions, we have 1√
T

[Tr]∑
s=1

vs ⇒ Ω1/2W (r) which implies that

1√
T

[Tr]∑
t=1

vx,t ⇒ Ω
1/2
11 W1(r)

and
1√
T

[Tr]∑
t=1

vy,t ⇒ ω21Ω
−1/2
11 W1(r) + ω

1/2
2.1W2(r).

Recall that θ2 = δ′δ, where δ = Ω
−1/2
11 ω12ω

−1/2
22 is a vector containing the bivariate zero frequency

correlations of each element of vx,t with vy,t. Define δ
′

= ω
−1/2
2.1 ω21Ω

−1/2
11 so that δ

′
δ = θ2

1−θ2 . We

can then see that
1√
T

[Tr]∑
t=1

δ
′
Ω
−1/2
11 vx,t ⇒

√
θ2

1− θ2
W̃1(r),

where W̃1 is an univariate standard Brownian motion independent of W2 and

1√
Tr

[Tr]∑
t=1

vy,t ⇒ ω
1/2
2.1

[
ω
−1/2
2.1 ω21Ω

−1/2
11 W1(r) +W2(r)

]
= ω

1/2
2.1

√ θ2

1− θ2
W̃1(r) +W2(r)

 .
Using these limiting expressions, all results in Lemma A1 follow from FCLT and Continuous Map-

ping Theorem.
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A.2 Proof of Theorem 1

The results follow directly from Lemma A1 and the fact that

√
T (γ̂ − γ) =

(
1

T 2

T∑
t=1

xtx
′
t

)−1(
1

T 3/2

T∑
t=1

xtuy,t

)
and

T · SE(γ̂) =

[(
1

T 2

T∑
t=1

xtx
′
t

)−1(
1

T

T∑
t=1

û2y,t

)]1/2
,

where ûy,t = uy t − (γ̂ − γ)′ xt. Notice that

ω
−1/2
2.1 ûy,t = ω

−1/2
2.1 uy t − ω−1/22.1

√
T (γ̂ − γ)

xt√
T

and ûy,t is also Op(1), so that

ω
−1/2
2.1 ûy,t ⇒ λJ12c − ω−1/22.1 λ

(∫
W1J12c

)′(∫
W1W

′
1

)−1
ω
1/2
2.1 Ω

−1/2
11 Ω

1/2
11 W1 =

= λJ12c − λ
(∫

W1J12c

)′(∫
W1W

′
1

)−1
W1 = λJ̃212c.

Therefore,

ω−12.1

(
1

T

T∑
t=1

û2y,t

)
⇒ λ2

∫
J̃212c.

A.3 Proof of Theorem 2

To simplify the intuition of the proof we assume no deterministic terms. Recall our conditional

VECM (5)

∆yt = βuy,t−1 + ϕ∆xt + π1(L)∆xt−1 + π2 (L) ∆yt−1 + et

This can be written in a compact form as

∆yt = X ′tΠ + et,

where

Π =
(
β ϕ π11 · · · π1p π21 · · · π2p

)′
,

X ′t =
(
uy,t−1 ∆xt ∆xt−1 · · · ∆xt−p ∆yt−1 · · · ∆yt−p

)
,

with β = a22(1) (ρ− 1) , ϕ = γ′ + λ√
T
σ21Σ

−1/2
11 and et = λ√

T
σ
1/2
2.1 ηyt. Defining, Π̂ as the OLS

estimator of Π, we have11

T
(

Π̂−Π
)

=

(
1

T

∑
X ′tXt

)−1 (∑
X ′tet

)
.

11To simplify the notation, we will assume that the summations are over all the available data which will depend
on the lag length.

17



Then, invoking the limiting results in Lemma A1, we have

1

T

∑
u2y,t−1 ⇒ ω2.1λ

2

∫
J212c(r),

∑
uy,t−1et =

λ√
T
σ
1/2
2.1

∑
uy,t−1ηyt

⇒ ω
1/2
2.1 σ

1/2
2.1 λ

2

∫
J12cdW2,

1

T

∑
uy,t−1∆xt−i → 0

for i = 0, 1, ..., p− 1 since 1√
T

∑
uy,t−1∆xt−1 is Op (1), and

1

T

∑
uy,t−1∆yt−i = γ′

1

T

∑
uy,t−1∆yt−i + c

1

T 2

∑
u2y,t−1 +

λ

T 3/2

∑
uy,t−1vyt−i → 0,

where→ denotes convergence in probability. The result in (6) follows directly from the asymptotic

block diagonality of
(
1
T

∑
X ′tXt

)−1
. Furthermore, note that

∑
∆xt−iet = λσ

1/2
2.1

1√
T

∑
∆xt−iηy,t

and
∑

∆yt−iet = λσ
1/2
2.1

1√
T

∑
∆yt−iηy,t are Op (1) so that T (ϕ̃− ϕ) , T (π̂2i − π2i) and T (π̂1i − π1i)

will also be Op (1) .

For the variance of the estimator β̃

T 2 ·Var
(
β̃
)

=

(
1

T 2

∑
u2y,t−1

)−1 (∑
ê2t

)
,

we have from Lemma A1 that
1

T

[T ·]∑
t=1

u2y,t ⇒ λ2ω2.1

∫
J212c.

We can write

êt = ∆yt −X ′tΠ̂ = et −
X ′t
T
T (Π̂−Π).

Since T (Π̂−Π) are Op (1), êt will converge in the limit to et = λ√
T
σ
1/2
2.1 ηyt and∑

ê2t → λ2σ2.1

since 1
T

∑
η2y,t → 1. Therefore,

T · SE
(
β̃
)
⇒ ω

−1/2
2.1 σ

1/2
2.1

(∫
J212c

)−1/2
.

Finally, using that β = ρ−1 = c
T , the t-test forH0 : β = β0 has the following limiting representation

t̃β=β0 =
T
(
β̃ − β0

)
T · SE(β̃)

⇒
(∫
J212c

)−1 (∫
J12cdW2

)(∫
J212c

)−1/2 .

For the test of the hypothesis H0 : β = 0, we have c = 0 and J12c = W12 in the above limiting

expression.
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A.4 Proof of Theorem 3

The unconditional VECM is given by

∆yt = βuy,t−1 + π1(L)∆xt−1 + π2 (L) ∆yt−1 + ξt.

This can be written in a more compact form as ∆yt = X ′tΠ + ξt, where the notation matches that

of the proof of Theorem 2, except that

X ′t =
(
uy,t−1 ∆xt−1 · · · ∆xt−p ∆yt−1 · · · ∆yt−p

)
is redefined to omit∆xt, Π=

(
β π11 · · · π1p π21 · · · π2p

)′
, and the new error ξt = ϕ∆xt+

et thus includes the omitted ϕ∆xt. Substituting for ϕ = γ′ + λ√
T
σ21Σ

−1/2
11 and et = λ√

T
σ
1/2
2.1 ηyt, we

have

ξt =

(
γ′ +

λ√
T
σ21Σ

−1/2
11

)
∆xt +

λ√
T
σ
1/2
2.1 ηyt.

The OLS estimator now converges at rate
√
T since

T
(

Π̂−Π
)

=

(
1

T

∑
X ′tXt

)−1( 1√
T

∑
X ′tξt

)
where

1√
T

∑
uy,t−1ξt =

1√
T

∑
uy,t−1γ

′∆xt + λσ21Σ
−1/2
11

1

T

∑
uy,t−1∆xt + σ

1/2
2.1 λ

1

T

∑
uy,t−1ηyt.

The last two terms converge to zero while

1√
T

∑
uy,t−1γ

′∆xt =
1√
T

∑
uy,t−1γ

′vxt ⇒ ω
1/2
2.1 λ(γ′Ω11γ)1/2

∫
J12cdW̃1 + γ′Λy,x

= ω
1/2
2.1 λ(γ′Ω11γ)1/2

(∫
J12cdW̃1 + Λ∗

)
.

where Λy,x and Λ∗ are defined in Theorem 3. Noting that
(
1
T

∑
X ′tXt

)−1
is again asymptotically

block diagonal and 1
T

∑
u2y,t−1 ⇒ ω2·1λ

2
∫
J212c(r), we have

√
T
(
β̂ − β0

)
=

(
1

T

∑
u2y,t−1

)−1( 1√
T

∑
uy,t−1ξt

)
⇒ λ−1ω

−1/2
2.1 (γ′Ω11γ)1/2

(∫
J212c

)−1(∫
J12cdW̃1 + Λ∗

)
For the variance of the estimator, we proceed similarly as in the proof in Theorem 2. Since

ξ̂t = ∆yt −X ′tΠ̂ = ξt −
X ′t√
T

√
T
(

Π̂−Π
)
,
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where ξt =
(
γ′ + λ√

T
σ21Σ

−1/2
11

)
∆xt + λ√

T
σ
1/2
2.1 ηyt = γ′∆xt + op (1), we have

1

T
ξ̂
′
ξ̂ =

1

T
ξ′ξ + op(1) =

1

T

∑
γ′vx,tv

′
x,tγ + op(1)→ γ′Γ0,xxγ.

The variance of the estimator can then be expressed as

T ·Var
(
β̂
)

=

(
1

T 2

∑
u2y,t−1

)−1( 1

T

∑
ξ̂
2

t

)
⇒ γ′Γ0,xγ

′
(
ω2.1λ

2

∫
J212c

)−1
.

Thus,

t̂β=βo =

√
T
(
β̂ − β0

)
√
T · SE(β̂)

⇒ (γ′Ω11γ)1/2

(γ′Γ0,xγ)1/2

(∫
J212c

)−1/2(∫
J12cdW̃1 + Λ∗

)
.

As before, when β = 0, c = 0 and J12c = W12.
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Table 1. Asymptotic critical values for t̃β=0 (conditional VECM) and t̂β=0 (unconditional VECM)

at 5% significance level.

θ2 t̃β=0 t̂β=0 t̃β=0 t̂β=0 t̃β=0 t̂β=0
no determ. terms constant, no trend constant and trend

0 -1.941 -1.645 -2.863 -1.645 -3.413 -1.645
0.2 -1.939 -1.819 -2.775 -2.278 -3.274 -2.544
0.3 -1.927 -1.857 -2.721 -2.403 -3.192 -2.725
0.5 -1.900 -1.902 -2.584 -2.584 -2.995 -2.995
0.7 -1.853 -1.921 -2.398 -2.721 -2.730 -3.192
0.8 -1.822 -1.932 -2.274 -2.778 -2.548 -3.280
0.9 -1.173 -1.938 -2.098 -2.826 -2.301 -3.351

Notes: Critical values are computed by simulating the asymptotic distributions with 200, 000 repli-

cations, T = 30, 000 and p = 0. For the case of no deterministic terms (“no determ. terms”), the

critical values are obtained from the limiting distributions in Theorems 2 and 3. For the other two

cases, the standard Brownian motion in the limiting distributions is replaced by its demeaned and

detrended analogs.
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Table 2. Simulation results for λ = 0.05, and various values of ρ, θ2 and T .

θ2 = 0 θ2 = 0.3 θ2 = 0.7

bias s.d. t-test bias s.d. t-test bias s.d. t-test
c = 0

T = 200 (ρ = 1)
CVECM -0.007 0.008 0.052 -0.005 0.007 0.053 -0.002 0.004 0.050
UVECM 0.003 2.276 0.052 -1.035 2.279 0.051 -1.583 2.281 0.051
T = 400 (ρ = 1)
CVECM -0.004 0.004 0.052 -0.003 0.004 0.053 0.001 0.002 0.051
UVECM 0.000 1.771 0.052 -0.806 1.774 0.051 -1.240 1.774 0.050
c = −5

T = 200 (ρ = 0.97)
CVECM -0.009 0.018 0.368 -0.006 0.015 0.566 -0.003 0.010 0.880
UVECM -0.05 5.002 0.053 -1.396 5.011 0.044 -2.136 5.015 0.041
T = 400 (ρ = 0.99)
CVECM -0.004 0.009 0.364 -0.003 0.007 0.565 -0.001 0.005 0.880
UVECM 0.014 3.554 0.052 -0.981 3.557 0.043 -1.508 3.561 0.040
c = −10

T = 200 (ρ = 0.95)
CVECM -0.009 0.024 0.793 -0.006 0.020 0.918 -0.003 0.013 0.994
UVECM -0.011 6.671 0.052 -1.422 6.681 0.041 -2.174 6.684 0.039
T = 400 (ρ = 0.97)
CVECM -0.005 0.012 0.792 -0.003 0.010 0.918 -0.001 0.007 0.994
UVECM 0.020 4.742 0.053 -1.009 4.746 0.041 -1.556 4.751 0.037

Notes: The table presents the average bias and standard deviations of the β estimates as well as

the rejection probabilities of the t-test for H0 : β = 0. The results are based on 30,000 Monte Carlo

replications.
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Table 3. Simulation results for λ = 10, and various values of ρ, θ2 and T .

θ2 = 0 θ2 = 0.3 θ2 = 0.7

bias s.d. t-test bias s.d. t-test bias s.d. t-test
c = 0

T = 200 (ρ = 1)
CVECM -0.007 0.008 0.052 -0.005 0.007 0.053 -0.002 0.004 0.050
UVECM -0.007 0.014 0.079 -0.012 0.017 0.061 -0.015 0.019 0.054
T = 400 (ρ = 1)
CVECM -0.004 0.004 0.052 -0.003 0.004 0.053 -0.001 0.002 0.051
UVECM -0.004 0.010 0.073 -0.008 0.012 0.059 -0.010 0.013 0.052
c = −5

T = 200 (ρ = 0.97)
CVECM -0.009 0.018 0.368 -0.006 0.015 0.566 -0.003 0.010 0.880
UVECM -0.009 0.031 0.248 -0.016 0.038 0.139 -0.020 0.041 0.109
T = 400 (ρ = 0.99)
CVECM -0.004 0.009 0.364 -0.003 0.007 0.565 -0.001 0.005 0.880
UVECM -0.004 0.020 0.182 -0.009 0.024 0.110 -0.012 0.026 0.088
c = −10

T = 200 (ρ = 0.95)
CVECM -0.009 0.024 0.793 -0.006 0.020 0.918 -0.003 0.013 0.994
UVECM -0.009 0.041 0.390 -0.016 0.050 0.219 -0.020 0.055 0.169
T = 400 (ρ = 0.97)
CVECM -0.005 0.012 0.792 -0.003 0.010 0.918 -0.001 0.007 0.994
UVECM -0.004 0.027 0.269 -0.010 0.032 0.158 -0.012 0.034 0.125

Notes: The table presents the average bias and standard deviations of the β estimates as well as

the rejection probabilities of the t-test for H0 : β = 0. The results are based on 30,000 Monte Carlo

replications.
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Table 4. Estimation results for unconditional and conditional VEC models (16) and (17).

BP DM SF CD JY
dual param.
λ 0.0402 0.0444 0.0519 0.0261 0.0407
ρ 0.9188

(0.0239)
0.9585
(0.0221)

0.9635
(0.0161)

0.8869
(0.0413)

0.8579
(0.0297)

ADF p-value 0.0740 0.3855 0.4614 0.0619 0.0750

model (16)
βU 1.7395

(0.9785)
0.9848
(0.7968)

1.4326
(0.6829)

1.1368
(0.5197)

3.3247
(0.7189)

R2 0.0141 0.0050 0.0119 0.0100 0.0450

model (17)
βC −0.0811

(0.0271)
−0.0433
(0.0211)

−0.0358
(0.0166)

−0.1098
(0.0382)

−0.1410
(0.0292)

ϕC 0.9999
(0.0025)

1.0018
(0.0019)

0.9995
(0.0020)

0.9974
(0.0026)

0.9997
(0.0023)

R2 0.9993 0.9996 0.9996 0.9984 0.9989

Notes: OLS estimates with Newey-West standard errors with 12 lags are in parentheses. The ADF

test for the null of a unit root is based on a model with a drift and 12 lags. The table reports its

p-value. R2 denotes the goodness-of-fit R2 statistic.
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Figure 1: The left charts plot (on the same scale) the spot rate, one-month forward rate and their
difference (spot-forward spread) for four (British pound (BP), German mark (DM), Swiss franc
(SF) and Canadian dollar (CD)) currencies. The right charts zoom in on the dynamics of the
spot-forward spread for these four currencies.
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