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Abstract

The ease of estimating linear local projections has made them a popular tool for
impulse response function analysis. Kolesár and Plagborg-Møller’s main goal is to
inquire whether local projections (LP) estimands of impulse response functions have
a causal interpretation when the data generating process (DGP) is nonlinear. This
discussion focuses on two questions. First, how should we interpret the magnitude of
the linear LP estimands in nonlinear environments? Second, is the linear LP useful
when the researcher is interested in the effects of large shocks rather than small
shocks?
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“Functional misspecification is a fact of life — one almost never has informa-

tion which justifies a particular linear or non-linear specification. Indeed, most

econometric estimating relationships are intended as approximations, rather

than as the ‘truth’. It is therefore useful to realize the limitations of our ap-

proximations.”

Halbert White (1980)

“Using Least Squares to Approximate Unknown Regression Functions”

International Economic Review, Vol. 21, No. 1, pp. 149-170

1 Introduction

Consider a practitioner who uses a linear local projection (LP) to estimate the impulse

response of Yt+h to a one-time shock in Xt given by

Yt+h = β̂hXt + γ̂′hWt + r̂t+h, (1)

where the coefficient β̂h is obtained from an ordinary least squares (OLS) regression of Yt+h

on Xt and a set of controls Wt. Kolesár and Plagbrog-Møller ask: What does β̂h estimate

when the “true” model is nonlinear?

The simplicity of estimating local projections has made them a widely used tool to

estimate impulse response functions in both linear and nonlinear models. While it is clear

that LP estimates the causal dynamic effect of interest when the underlying DGP is linear,

this is not obvious in the presence of nonlinearities. Yet, it has become common practice

among practitioners to employ linear LPs to approximate the impulse response functions

of nonlinear processes.

Kolesár and Plagborg-Møller’s main finding is that the causal content of the linear LP

estimand depends on how we identify the shock of interest. In particular, linear LP has a

useful causal interpretation when the shock is observed (the “good”), but not necessarily

when identification is achieved by heteroskedasticity (the “bad”) or non-Gaussianity (the

“ugly”) restrictions. Given the predominance of linear LP in applied macroeconomics, this

is a very timely and important paper. It offers a clear picture of the situations where linear

LP can and cannot be useful for causal inference in macroeconomics, allowing for more

informed decisions by researchers and practitioners using these methods.

In this discussion, we focus on the “good” and assume that the shock of interest is

observed. This not only corresponds to the case where the linear LP estimand has a useful
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causal interpretation (as shown by this paper under very general conditions), but it is also

empirically relevant as it covers the widely popular narrative identification approach. Our

ultimate goal is to offer some suggestions intended to further clarify in what circumstances

linear LP recovers useful notions of impulse response functions (IRFs) considered in the

existing literature.

The rest of this discussion is organized as follows. In Section 2, we review two different

definitions of IRFs that have been used in nonlinear impulse response analysis: the “average

response function” (ARF) and the “average marginal response function” (AMRF). The first

considers the effect of a fixed-sized δ shock whereas the second considers infinitesimally-

sized shocks (i.e., δ → 0). Section 3 briefly reviews the form of the linear LP estimand as

derived by the authors. We then relate it to the ARF and the AMRF. First, in Section 4.1,

we show that the ability of the linear LP estimand to recover the average marginal response

function depends on the type of nonlinearity and on the shape of the distribution of the

shock of interest. In Section 4.2, we provide simulation evidence based on a model that

includes different types of nonlinear regressors and different errors distributions. Linear LP

may be strongly biased as an estimator of the average marginal response function when

the nonlinearity captures a “size” effect as opposed to a “sign” effect. In contrast, a simple

nonparametric estimator of the average marginal response function is able to eliminate this

bias. In Section 5, we investigate the bias of the linear LP estimator when used to estimate

the average response function. Our results suggest that this bias may be sizable unless the

size of the shock is not too large relative to its standard deviation. Section 6 concludes.

2 Causal Effects in Nonlinear Models

Consider a special case of the causal framework in Kolesár and Plagborg-Møller given by

Yt+h = ψh(Xt, Ut+h), Xt ⊥ Ut+h

where ψh is a very general (unknown) function and Ut+h is a vector containing all variables

(dated before, on, and after time t) that causally affect Yt+h, other than Xt. The indepen-

dence condition Xt ⊥ Ut+h follows from the fact that Xt is a structural i.i.d. shock that is

independent of the other shocks driving Yt. The goal is to identify the causal dynamic effect

of a one-time perturbation of size δ in Xt on the outcome variable Yt+h for h = 0, 1, . . ..

This task is particularly challenging when the model is nonlinear as various definitions of

the IRFs are available to the researcher.
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A natural definition of this causal effect is the difference between the counterfactual

when Xt is perturbed by δ and a baseline with no perturbation:

ψh(Xt + δ, Ut+h)︸ ︷︷ ︸
≡Yt+h(δ): counterfactual

−ψh(Xt, Ut+h)︸ ︷︷ ︸
≡Yt+h: baseline

. (2)

Yet, the difficulty with obtaining the ceteris paribus effect of this perturbation stems from

the fact that under nonlinear ψh, the difference defined in Equation (2) is random as it

depends on Xt and (potentially) on Ut+h. The question then becomes: How should the

researcher summarize the causal effect? An obvious answer would be to consider reporting

the average impulse response function. But, which average? To clarify this point, we next

review two possible average IRFs the researcher may consider.

Following Kolesár and Plagborg-Møller, we let

Ψh(x) ≡ E(ψh(x, Ut+h))

denote the expected potential outcome function. A definition considered in Gonçalves et

al. (2021, 2024) is the average response function which considers the response to a shock

of fixed size δ and is given as follows.

Definition 1 The average response function of Yt+h to a shock of fixed size δ in Xt is

defined as

ARFh(δ) = E(Ψh(Xt + δ))− E(Ψh(Xt)) = E(ψh(Xt + δ, Ut+h))− E(ψh(Xt, Ut+h)).

Such a definition would be of interest to a practitioner seeking to estimate the average

effect of a “large shock”, for instance, a 25 basis point shock to the fed funds rate or a 10%

increase in oil prices on GDP growth.

A second definition available to the practitioner captures the response to an infinitesimally-

sized shock, i.e. δ → 0, as follows.

Definition 2 The average marginal response function of Yt+h to a shock δ → 0 in Xt is

defined as

AMRFh = E[Ψ′
h(Xt)] = lim

δ→0
ARFh(δ)/δ,

provided we can interchange the limit with the expectation operator.
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Definition 2 is useful when capturing the effects of “small shocks”, where “small” is

defined in relation to the standard deviation of the Xt (see Gonçalves et al. (2024) for

more on this point).

It is important to recall that while in linear models, these definitions coincide (up to

scale), this is not the case in nonlinear models. Next, we briefly review the form of the

linear LP estimand derived by Kolesár and Plagborg-Møller when Xt is an observed shock,

with an eye geared towards relating it with Definitions 1 and 2. Our ultimate goal is to

further clarify under what conditions linear LP can provide a good approximation to these

IRF definitions.

3 The linear LP estimand

Proposition 1 of Kolesár and Plagborg-Møller proves that

β̂h →p βh ≡
∫
ω(x)g′h(x)dx,

where gh(x) ≡ E(Yt+h|Xt = x). A causal interpretation of this estimand is obtained

when Xt is independent of Ut+h since then gh(x) = Ψh(x) ≡ E(ψh(x, Ut+h)), and βh =∫
ω(x)Ψ′

h(x)dx. Importantly, when Xt is an observed shock –as it is the case when the

shock is identified via a narrative approach– the weights ω(x) are “well behaved” in the

sense that ω(x) ≥ 0 for all x and
∫
ω(x)dx = 1. In other words, the linear LP can be

interpreted as a convexly-weighted average of the marginal effects. In addition, the weights

are humped-shaped and peak at the mean, E(Xt). These properties guarantee that, as long

as g′h(x) is always of the same sign, there is no sign reversal, i.e., the sign of the linear LP

is consistent with the sign of g′h(x) for any x even when the DGP is nonlinear. In contrast,

convex weights cannot be guaranteed when the shock is identified via heteroskedasticity

(“the bad”) or non-Gaussianity (“the ugly”).

A very nice property of the proof is that the conditions under which the LP estimand

can be given a causal interpretation are very general and allow for models with kinks

(e.g. f(x) = max(x, 0)) and regime switching (state-dependent SVARs). In addition, the

authors generalize the existing literature on this topic by allowing Xt to have unbounded

support, which is key when discussing potential outcomes in macroeconomic settings where

shocks are continuous and potentially unbounded. This is a great improvement over existing

results in the literature that use bounded support.

While we agree that the property of no sign-reversal ensured by the convexity of the
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weights ω(x) is a minimum requirement for an estimand to have a causal interpretation, we

question whether this is sufficient for justifying interest in linear LP when interest focuses

on the magnitude of the response to a shock. For example, a long-standing question in the

literature on government spending shocks has been what the magnitude is of the government

spending multiplier (e.g., Ramey, 2011). The key question economists seek to answer is

whether the multiplier is less than or more than unity. In this case, getting the sign of the

multiplier correctly is not enough.

In the next section, we compare the LP estimand with the AMRF defined in Definition 2,

which is a natural benchmark to the linear LP estimand. The AMRF may be easier to

interpret as it relies on a pre-specified set of weights given by the density function of the

shock Xt.

4 Linear LP and the Average Marginal Response

4.1 Large sample comparison

Letting f(x) denote the density of Xt, we can write

AMRFh =

∫
f(x)g′h(x)dx.

The difference between βh and AMRFh crucially depends on the functional form gh(x) and

the density of Xt, f(x). In particular, the two weighting schemes coincide if ω(x) = f(x),

which is the case when Xt ∼ N(0, σ2) as shown by Yitzhaki (1996). Moreover, as Caravello

and Mart́ınez Bruera (2024) demonstrate, if f(x) is symmetric (even if not Gaussian), ω(x)

is also symmetric. In this case, it can be shown that βh = AMRFh if gh(x) is an even

function (e.g., if gh(x) = |x|), but not otherwise (e.g., if gh(x) = x3). Finally, when f(x) is

asymmetric, βh is generally different from AMRFh and no ranking between βh and AMRFh

can be provided.

Figures 1 - 3 verify these statements and provide illustrations for functional forms of

gh(x) often found in the literature and alternative densities for the shock of interest, Xt.

Figure 1 displays the density f(x), the weights, ω(x), the first derivative of the nonlinear

function, g′h(x), and the products between g′h(x) and f(x), and g
′
h(x) and ω(x), respectively,

when gh(x) = β0x + |x| and f(x) is symmetric. For simplicity, we set β0 = 0. The linear

LP estimand corresponds to the integral of g′h(x)ω(x) whereas the AMRF is the integral of

g′h(x)f(x). Note that here gh(x) is an even function, which could reflect sign nonlinearities

(see Caravello and Mart́ınez-Bruera (2024)). Panel (a) corresponds to the case where Xt
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(a) N(0, 1) (b) t(4)

Figure 1: gh(x) = β0x+ |x| (with β0 = 0)

follows a standard normal distribution and panel (b) corresponds to the Student-t with 4

degrees of freedom standardized to have unit variance, which is intended to capture fat

tails. As Figure 1 illustrates, the linear LP captures only the linear component (equal

to zero in this example) of the IRF under symmetric (not necessarily Gaussian) shocks.

Because the density is still symmetric, albeit with thicker tails, the integral of g′h(x)ω(x)

and g′h(x)f(x) coincide and are both zero, equal to the linear component of the IRF.1

Consider now the case where gh is an odd function, capturing size dependence in the

impulse response functions. Figure 2 depicts the weights, the function g′h(x), and their

products when gh(x) = β0x+
1
3
x3 and the shocks are symmetrically distributed. Panel (a)

illustrates the case when Xt follows a standard normal density and panel (b) when it follows

a t(4) distribution. As Figure 2 shows, in this case, the linear LP no longer equals zero,

capturing the presence of “size” effects. Indeed, the magnitude of the linear LP remains

unchanged if we add any even function to gh(x). A comparison between panels (a) and (b)

reveals that w(x) = f(x), i.e. the linear LP estimand coincides with the AMRF only when

Xt is standard normal.

Finally, we illustrate the case where Xt follows an asymmetric distribution in Figure

3. To illustrate the difference between the linear LP estimand and AMRF, we let f(x)

be a Generalized Extreme Value (GEV) density with a shape parameter of 0, a scale

parameter of 1, and a location parameter of 0, demeaned and standardized. As in the

previous examples, in addition to the density function, we plot the implied causal weights,

the nonlinear function g′h(x) and their products, for gh(x) = |x|, an even function, and for

1We use a unit variance for ease of comparison across different distributions. However, as long as the
variance is finite, it does not need to be equal to unity for the statements to hold.
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(a) N(0, 1) (b) t(4)

Figure 2: gh(x) = β0x+
1
3
x3 (with β0 = 0)

gh(x) =
1
3
x3, an odd function, in panels (a) and (b), respectively.

(a) gh(x) = |x| (b) gh(x) =
1
3x

3

Figure 3: f(x) is GEV (0, 1, 0)

It is clear from Figure 3 that the linear LP no longer wipes out “sign” effects when

the shock distribution is asymmetric. In general, the magnitude of the linear LP estimand

depends on ω(x), f(x), and the shape of gh(x), and no clear ranking between the linear

LP estimand and the AMRF can be provided. For instance, in the case of the asymmetric

GEV (0, 1, 0) distribution illustrated in Figure 3, the magnitude of the linear LP estimates

exceeds the corresponding AMRF.

4.2 Small sample comparison

The previous section suggests that the discrepancy between the LP estimand and the

AMRF depends on the shape of g′h(x) and the properties of f(x). Nevertheless, employ-
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ing such a straightforward method for estimating a parameter that may have a causal

interpretation presents certain advantages. Specifically, as indicated by the authors, the

linear LP obviates the necessity to nonparametrically estimate g′h(x), a task which can

present considerable difficulties when confronted with small sample sizes commonly found

in macroeconomics. In this section, we employ simulations to show that, despite these

concerns, there are empirically relevant combinations of g′h(x) and f(x) for which a non-

parametric approach to estimate AMRFh seems promising in that it produces a small

bias.

To do so we consider one of the DGPs in Gonçalves et al. (2021) where the shock is

assumed to be identified via a narrative approach so that:{
xt = ε1t

yt = 0.5xt + 0.5yt−1 − 0.4h(xt) + ε2t.

We examine the scenarios in which the nonlinear regressor h(xt) either equals x3t or

|xt|. The distribution of ε1t is characterized as either symmetric, following a t-distribution

with 4 degrees of freedom, or asymmetric, following a Generalized Extreme Value (GEV)

distribution with a shape parameter of 0, a scale parameter of 1, and a location parameter

of 0. Furthermore, ε2t follows a N(0, 1) distribution. We compare the linear LP estimator

and a nonparametric estimator of AMRFh = E[g′h(X)], where g′h(x) is obtained via a local

linear kernel regression. To illustrate the behavior of the estimators when the sample size

is small we set T = 250 (slightly more than twenty years of monthly data or 80 years of

quarterly data) and estimate the average response over 1,000 Monte Carlo draws.

(a) h(x) = x3 (b) h(x) = |x|

Figure 4: Comparison of linear LP and local linear, t4 distribution.

Figure 4 plots the true impulse response function as defined by Definition 2, the average

of the linear LP estimates and the nonparametric estimates over the 1,000 draws. The
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figure shows that when the distribution is symmetric but heavy-tailed, the nonparametric

estimator differs from the local linear estimator when h(x) = x3, as expected from the

previous section. The local linear estimator is centered around the AMRF, the target

parameter, whereas the linear LP is not (unsurprisingly). In contrast, the performance of

the linear LP and the nonparametric estimator is similar when h(x) = |x|, as expected

from our discussion in the previous section.

Figure 5 plots the simulation results when Xt follows an asymmetric distribution. As in

the previous section we employ a GEV(0,1,0) distribution. We note that when the distribu-

tion is asymmetric the linear LP estimator underperforms the nonparametric estimator in

terms of bias if the target IRF is the AMRF. These findings indicate that the nonparamet-

ric estimator constitutes a viable alternative, even in scenarios where researchers encounter

the small sample sizes frequently observed in macroeconomic studies.

(a) h(x) = x3 (b) h(x) = |x|

Figure 5: Comparison of LP with local linear, GEV distribution.

5 Linear LP and “large shocks”

Lastly, we explore what happens when the practitioner is interested in estimating the im-

pulse response to a fixed-size shock instead of δ → 0. Our interest in answering this question

stems from empirical applications in which the researcher is interested in estimating the

response of GDP growth to oil price shocks that exceed one standard deviation (e.g., an

unexpected 10% increase in the oil price), the impact of a military spending shock that

amounts to the military build-ups experienced during a war (e.g., the World War II military

spending shock is 12 times the standard deviation over the 1890Q1 to 2015Q4 sample), or

government spending multipliers when the size of the shock exceeds one standard deviation.
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To explore how the bias of the linear LP evolves as the size of the shock increases relative

to the standard deviation of xt, we employ the same DGP as in the previous section and

compute the relative bias of the linear LP to the population average response function

as defined in Definition 1. We again examine the scenario wherein h(xt) corresponds to

either x3t or |xt|. The distribution of ε1t is N(0, 1), which, as we illustrated in the previous

section, is the distribution most favorable to linear LP. Under this distribution, the standard

deviation of Xt is σ = 1 and we can interpret δ as the ratio δ/σ.

(a) f(x) = x3 (b) f(x) = |x|

Figure 6: Percentage bias of LP relative to population ARF, N(0,1) distribution.

As Figure 6 demonstrates, the relative bias increases with the ratio of δ
σ
. Indeed, even

for shocks of size δ = 1 (i.e., one standard deviation), the relative bias exceeds 30% at all

horizons for x3 and 50% after impact for |x|. These simulations suggest that even in cases

where the shocks are normally distributed and the shock is identified through a narrative

scheme, the “good” still has a downside: the linear LP results in a biased estimate of the

ARF when the shock is “large”.

6 Conclusions

Although linear LP has a causal interpretation under convex weights when the shock of

interest is directly observed, interpreting the LP estimates may prove difficult as these

depend on the shape of gh(x) and on the density of Xt. As the authors suggest, plotting the

weights provides useful information to the researcher interested in estimating the marginal

effect and identifying the sign of the response, but it might not suffice if the object of

interest is the magnitude of the response. A natural benchmark in this case is the average

marginal response function, whose weights are the density function of the shock. Whether

10



linear LP provides a good approximation to this notion of IRF depends on the type of

nonlinearity and on the density of the shock. Another potential limitation of the linear LP

approach is the difficulty in measuring the impact of large shocks.

Ultimately, if we care about the magnitude of the IRFs or the impact of large shocks, we

might not be able to escape some form of nonparametric estimation (which is in line with

Section 6 of the paper). Alternatively, we may have to constrain ourselves to a parametric

model that is rich enough to minimize the risk of misspecification and to justify the IRFs

we get from that model.
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