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A Proofs of the main propositions

The proof of our results relies on the independence between the potential outcomes yt+h (e) and the

structural error ε1t. This independence condition follows straightforwardly from our assumptions

and is instrumental in providing a causal interpretation to the state-dependent LP estimands. We

summarize this result in the following lemma.

Lemma A.1 Consider the structural process defined by equations (3) and (4) in the main text. Under

Assumptions 1 and 2, ε1t is independent of {yt+h (e) , e ∈ A}, where A is the support of ε1t.

Proof of Lemma A.1. This proof is obvious given the definitions of yt+h (e) derived in the main

text.

Proof of Lemma 2.1. Let yt+h (e) = mh (e, Ut+h). For given e, we can write

E
(
yt+h (e+ δ)− yt+h (e) |Ht−1 = h̄

)
=

∫
[mh (e+ δ, U)−mh (e, U)] f

(
U |h̄

)
dU,

where f
(
U |h̄

)
denotes the conditional density function of Ut+h given Ht−1 = h̄. Dividing by δ and

integrating with respect to e yields∫
A
δ−1E

(
yt+h (e+ δ)− yt+h (e) |Ht−1 = h̄

)
f
(
e|h̄
)
de =

∫
A

∫
δ−1 [mh (e+ δ, U)−mh (e, U)] f

(
U |h̄

)
f
(
e|h̄
)
dU ,

where f
(
e|h̄
)
denotes the conditional density function of ε1t given Ht−1 = h̄. Under the assump-

tion that ε1t and Ut+h are independent, conditionally on Ht−1 = h̄, we have that f
(
e, U |h̄

)
=

f
(
U |h̄

)
f
(
e|h̄
)
. Moreover, for fixed e and U , by the definition of a derivative,

limδ→0 δ
−1 [mh (e+ δ, U)−mh (e, U)] = m′

h (e, U), assuming the derivative of mh with respect to e

exists. Thus,

lim
δ→0

δ−1CARh

(
δ, h̄
)

= lim
δ→0

∫
A
δ−1E

(
yt+h (e+ δ)− yt+h (e) |Ht−1 = h̄

)
f
(
e|Ht−1 = h̄

)
de

=

∫
A

∫
U
m′

h (e, U) f
(
e, U |h̄

)
dedU

= E
(
m′

h (ε1t, Ut+h) |Ht−1 = h̄
)
= E

(
y′t+h (ε1t) |Ht−1 = h̄

)
≡ CMRh

(
h̄
)
,

where the last equality follows by definition of yt+h = mh (ε1t, Ut+h).

Proof of Proposition 3.1. The proof is in the text.

Proof of Proposition 3.2. The proof is in the text.

Proof of Proposition 3.3. We start by deriving the potential outcomes yt+h (e) for this model.
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For any e, define

β (e) = βR + (βE − βR) η (e) and γ (e) = γR + (γE − γR) η (e) ,

with η (e) = 1 (e > c) for any fixed e. Let V0t ≡ γt−1yt−1 + ε2t be a function of (ε2t, yt−1, ε1t−1) =(
ε2t, z

′
t−1

)
≡ U ′

t , since xt = ε1t and z′t = (xt, yt). With this notation, for h = 0, yt = βt−1ε1t + V0t.

The potential outcome for h = 0 is obtained from this equation by fixing ε1t = e:

yt (e) = βt−1e+ V0t ≡ m0 (e, Ut) ,

with Ut ≡
(
ε2t, z

′
t−1

)′
. For h = 1, yt+1 = βtε1t+1 + γtyt + ε2t+1, where yt = yt (ε1t), βt = β (ε1t) and

γt = γ (ε1t). Hence, upon fixing ε1t = e, we have that

yt+1 (e) = β (e) ε1t+1 + γ (e) yt (e) + ε2t+1,

which shows that yt+1 (e) can be obtained from yt (e). Replacing yt (e) = βt−1e+ V0t,

yt+1 (e) = γ (e)βt−1e+ Vt+1 (e) ≡ m1 (e, Ut+1) , (1)

where

Vt+1 (e) = γ (e)V0t + β (e) ε1t+1 + ε2t+1 ≡ V1 (e, Ut+1)

with

Ut+1 =
(
ε′t+1, ε2t, z

′
t−1

)′ ≡ (ε′t+1, U
′
t

)
.

For h = 2, writing βt+1 ≡ β (ε1t+1) and γt+1 ≡ γ (ε1t+1), it follows that

yt+2 (e) = βt+1ε1t+2 + γt+1yt+1 (e) + ε2t+2

= βt+1ε1t+2 + γt+1 [γ (e)βt−1e+ Vt+1 (e)] + ε2t+2

= γt+1γ (e)βt−1e+ Vt+2 (e) ≡ m2 (e, Ut+1) ,

where

Vt+2 (e) ≡ γt+1Vt+1 (e) + βt+1ε1t+2 + ε2t+2

= γt+1 [γ (e)V0t + β (e) ε1t+1 + ε2t+1] + βt+1ε1t+2 + ε2t+2

= γt+1γ (e)V0t + γt+1β (e) ε1t+1 + ε2t+1 + βt+1ε1t+2 + ε2t+2,

which is a function of Ut+2 ≡
(
ε′t+2, ε

′
t+1, ε2t, z

′
t−1

)′
=
(
ε′t+2, U

′
t+1

)′
. For any h > 1,

yt+h (e) = γt+h−1 · · · γt+1γ (e)βt−1e+ Vt+h (e) ≡ mh (e, Ut+h) ,
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where

Vt+h (e) ≡ γt+h−1Vt+h−1 (e) + βt+h−1ε1t+h + ε2t+h,

and Ut+h ≡
(
ε′t+h, U

′
t+h−1

)′
.

Next, we show part (i) of the proposition, which derives the conditional average response function

for any fixed δ. For h = 0, yt (e+ δ)− yt (e) = βt−1δ, which does not depend on e. Hence,

CAR0

(
δ, h̄
)
= E

(
yt (ε1t + δ)− yt (ε1t) |Ht−1 = h̄

)
= E

(
βt−1|Ht−1 = h̄

)
δ = βh̄δ.

For h = 1, by Definition 1,

CAR1

(
δ, h̄
)
= E

(
yt+1 (ε1t + δ)− yt+1 (ε1t) |Ht−1 = h̄

)
,

where yt+1 (ε1t) is equal to yt+1 (e) with e = ε1t (and similarly for yt+1 (ε1t + δ)). We will evaluate

CAR1

(
δ, h̄
)
below, but note that under the simplified Assumption 3, for any h > 1, we can write

CARh

(
δ, h̄
)
as a function of CAR1

(
δ, h̄
)
. Specifically, for h = 2, we have that

yt+2 (e+ δ)− yt+2 (e) = γt+1yt+1 (e+ δ) + βt+1ε1t+2 + ε2t+2 − (γt+1yt+1 (e) + βt+1ε1t+2 + ε2t+2)

= γt+1 [yt+1 (e+ δ)− yt+1 (e)] ,

and more generally for any h > 1,

yt+h (e+ δ)−yt+h (e) = γt+h−1 [yt+h−1 (e+ δ)− yt+h−1 (e)] = (γt+h−1 · · · γt+1) [yt+1 (e+ δ)− yt+1 (e)] .

By Definition 1, for any h > 1,

CARh

(
δ, h̄
)

= E
[
yt+h (ε1t + δ)− yt+h (ε1t) |Ht−1 = h̄

]
= E (γt+h−1 · · · γt+1)E

[
yt+1 (ε1t + δ)− yt+1 (ε1t) |Ht−1 = h̄

]
= (γ̄)h−1CAR1

(
δ, h̄
)
, (2)

where we let γ̄ ≡ E (γt+1) for any t. The last equality follows from the fact that γt is a function

of ε1t and ε1t is i.i.d. This implies that we only need to evaluate CAR1

(
δ, h̄
)
and γ̄ to obtain the

entire conditional average response function. Under Assumption 3(a) and (b), where the Gaussianity

assumption is instrumental in deriving the closed form expressions for γ̄ and CAR1

(
δ, h̄
)
, using (1),
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for any fixed e,

yt+1 (e+ δ)− yt+1 (e) = γ (e)βt−1δ

+[γ (e+ δ)− γ (e)]βt−1δ

+ [γ (e+ δ)− γ (e)]βt−1e

+ [γ (e+ δ)− γ (e)]V0t

+ [β (e+ δ)− β (e)] ε1t+1.

Next, evaluate this difference at e = ε1t and take the expectation, conditionally on Ht−1 = h̄. It

follows that for any fixed δ,

CAR1

(
δ, h̄
)

≡ E
[
yt+1 (ε1t + δ)− yt+1 (ε1t) |Ht−1 = h̄

]
= E

[
γ (ε1t) |Ht−1 = h̄

]
βh̄δ + {E

[
(γ (ε1t + δ)− γ (ε1t)) |Ht−1 = h̄

]
βh̄δ

+E
[
(γ (ε1t + δ)− γ (ε1t)) ε1t|Ht−1 = h̄

]
βh̄ + E

[
(γ (ε1t + δ)− γ (ε1t))V0t|Ht−1 = h̄

]
+E[(β (ε1t + δ)− β (ε1t))ε1t+1|Ht−1 = h̄]} (3)

Note that the last term in (3) has conditional mean zero. This follows by the law of iterated expec-

tations, using the fact that ε1t is an i.i.d. zero mean random variable which is independent of ε2t.

Under these assumptions, V0t is independent of ε1t, and the second-to-last term can be written as

E (γ (ε1t + δ)− γ (ε1t))]vh̄ (where vh̄ = E
(
V0t|Ht−1 = h̄

)
= γh̄E(yt−1|Ht−1 = h̄)). By using similar

arguments, we can decompose CAR1

(
δ, h̄
)
into the sum of

Direct effect = E(γ (ε1t))βh̄δ.

Indirect effect = E [(γ (ε1t + δ)− γ (ε1t))]βh̄δ

+E [(γ (ε1t + δ)− γ (ε1t)) ε1t]βh̄

+E [γ (ε1t + δ)− γ (ε1t)] vh̄.

This decomposition shows that the first component of CAR1

(
δ, h̄
)
captures the direct effect of a shock

of size δ in ε1t on yt+h. Since γ (ε1t) = γt, this is the effect of a change in ε1t on yt+h that keeps γt

constant, as when Ht is exogenous. However, in the current model, Ht = η (ε1t), which means that

when we perturb ε1t by δ, this also impacts the model parameters at time t. The last three terms

in CAR1

(
δ, h̄
)
capture this “indirect effect” since they depend on the wedge between γ (ε1t + δ) and

γ (ε1t).
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Suppose now that ε1t ∼ N
(
0, σ2

1

)
, as in Assumption 3(b). Then,

E (η (ε1t + δ)) = E (1 (ε1t + δ > c)) = P (ε1t/σ1 > (c− δ) /σ1) = 1−Φ ((c− δ) /σ1) = Φ (−c/σ1 + δ/σ1) .

and

E (γ (ε1t + δ)) = γR + (γE − γR) Φ (−c/σ1 + δ/σ1) .

Also, we can show that

E [(γ (ε1t + δ)− γ (ε1t)) ε1t] = (γE − γR)E [(η (ε1t + δ)− η (ε1t)) ε1t]

= (γE − γR)E [(1 (ε1t + δ > c)− 1 (ε1t > c)) ε1t]

= (γE − γR)E

[
(1 ((c− δ) /σ1 < ε1t/σ1 < c/σ1))

ε1t
σ1

]
σ1

= (γE − γR)σ1 [ϕ ((c− δ) /σ1)− ϕ (c/σ1)]

= (γE − γR)σ1 [ϕ (−c/σ1 + δ/σ1)− ϕ (−c/σ1)] .

It follows that

CAR1

(
δ, h̄
)

= E [γ (ε1t + δ)]βh̄δ + E [(γ (ε1t + δ)− γ (ε1t)) ε1t]βh̄ − E [γ (ε1t + δ)− γ (ε1t)] vh̄

= {γR + (γE − γR) Φ(−c/σ1 + δ/σ1)}βh̄δ + (γE − γR)σ1[ϕ (−c/σ1 + δ/σ1)− ϕ (−c/σ1))]βh̄

+{(γE − γR) [Φ (−c/σ1 + δ/σ)− Φ (−c/σ1)]vh̄}

= {γR + (γE − γR) Φ(−c/σ1)}βh̄δ︸ ︷︷ ︸
=E(γt)βh̄δ=Direct effect

+ {γR + (γE − γR) [Φ(−c/σ1 + δ/σ1)− Φ(−c/σ1)]}βh̄δ

+ {(γE − γR)σ1(ϕ(−c/σ1 + δ/σ1)− ϕ(−c/σ1))}βh̄ (4)

+ {(γE − γR) [Φ (−c/σ1 + δ/σ1)− Φ (−c/σ1)]} vh̄,

where the last three terms define the “Indirect effect”. Plugging this expression into (2) gives the

formula for CARh

(
δ, h̄
)
for any h > 1 and any fixed δ. Note that

γ̄ = E (γt) = γR + (γE − γR) Φ(−c/σ1) for all t.

To prove part (ii), we use the fact that

CMRh

(
h̄
)

= lim
δ→0

[δ−1CARh

(
δ, h̄
)
]

= (γ̄)h−1 lim
δ→0

[δ−1CAR1

(
δ, h̄
)
]

= (γ̄)h−1CMR1

(
h̄
)
,
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where CMR1

(
h̄
)
= limδ→0CAR1

(
δ, h̄
)
/δ. In particular, by dividing (4) by δ and taking the limit as

δ → 0, we get

CMR1

(
h̄
)
= {γR + (γE − γR) Φ(−c/σ1)}βh̄ + I0 + I1 + I2,

where

I0 = lim
δ→0

δ−1 {γR + (γE − γR) [Φ(−c/σ1 + δ/σ1)− Φ(−c/σ1)]}βh̄δ = 0

I1 = lim
δ→0

δ−1 {(γE − γR)σ1(ϕ(−c/σ1 + δ/σ1)− ϕ(−c/σ1))}βh̄

I2 = lim
δ→0

[δ−1 (γE − γR) [Φ (−c/σ1 + δ/σ1)− Φ (−c/σ1)]]vh̄.

We can evaluate I1 and I2 by using the following two Taylor expansions of the Gaussian pdf and cdf,

ϕ(−c/σ1 + δ/σ1) = ϕ(−c/σ1) + ϕ′(−c/σ1)
δ

σ1
+O

(
δ2
)
,

Φ(−c/σ1 + δ/σ1) = Φ(−c/σ1) + Φ′(−c/σ1)
δ

σ1
+O

(
δ2
)
,

where Φ′(−c/σ1) = ϕ(−c/σ1) = ϕ(c/σ1) and ϕ′ (−c/σ1) = − (−c/σ1)ϕ (−c/σ1) = ϕ(c/σ1)c/σ1 by the

properties of the Gaussian pdf and cdf (in particular, note that Φ′ (x) = ϕ (x), ϕ (x) = ϕ (−x) and

ϕ′ (x) = −xϕ (x)). Hence,

I1 = (γE − γR)σ1ϕ(c/σ1)c/σ
2
1βh̄ = (γE − γR)ϕ(c/σ1)c/σ1βh̄,

and

I2 = (γE − γR)σ
−1
1 ϕ (c/σ1) vh̄.

Thus,

CMR1

(
h̄
)
= {γR + (γE − γR) Φ(−c/σ1)}βh̄ + (γE − γR)ϕ (c/σ1)σ

−1
1 (cβh̄ + vh̄) .

Proof of Proposition 3.4. The result for h = 0 is immediate, so we focus on h ≥ 1. For any

such value of h, we can show that

bh
(
h̄
)
=

E
(
yt+hε1t|Ht−1 = h̄

)
E
(
ε21t|Ht−1 = h̄

) = (γ̄)h−1 b1
(
h̄
)
,

using the fact that γt is i.i.d. since it is a function of ε1t. Thus, we focus on deriving b1
(
h̄
)
=

E(yt+1ε1t|Ht−1=h̄)
E(ε21t|Ht−1=h̄)

. Note that the denominator of b1
(
h̄
)
is equal to σ2

1 under our assumptions, so it is

sufficient to derive E
(
yt+1ε1t|Ht−1 = h̄

)
. Replacing yt+1 by equation (3) in the main text, we write

E
(
yt+1ε1t|Ht−1 = h̄

)
= E

(
(βtε1t+1 + γtyt + ε2t+1) ε1t|Ht−1 = h̄

)
= E(γtytε1t|Ht−1 = h̄),
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since E
(
βtε1t+1ε1t|Ht−1 = h̄

)
= E

(
ε2t+1ε1t|Ht−1 = h̄

)
= 0. But since γt = γR + (γE − γR)Ht,

E(γtytε1t|Ht−1 = h̄) = (γE − γR)E
(
Htytε1t|Ht−1 = h̄

)
+γRE

(
ytε1t|Ht−1 = h̄

)
≡ (γE − γR)A1+γRA2.

It follows that

A1 ≡ E
(
ε1tHtyt|Ht−1 = h̄

)
= E

(
ε1tHt (βt−1ε1t + γt−1yt−1 + ε2t) |Ht−1 = h̄

)
= E

(
ε21tHt|Ht−1 = h̄

)
βh̄ + E

(
ε1tHtγt−1yt−1|Ht−1 = h̄

)
+ E

(
ε1tε2tHt|Ht−1 = h̄

)
= E

(
ε21tHt

)
βh̄ + E (ε1tHt)E

(
γt−1yt−1|Ht−1 = h̄

)︸ ︷︷ ︸
≡vh̄

+ 0,

where E
(
ε1tε2tHt|Ht−1 = h̄

)
= 0 by the fact that ε1tHt is independent of ε2t under Assumptions 1 and

3. Similarly, we can write E
(
ε1tHtγt−1yt−1|Ht−1 = h̄

)
= E (ε1tHt) vh̄, where vh̄ ≡ E

(
V0t|Ht−1 = h̄

)
=

E(γt−1yt−1|Ht−1 = h̄). Next, we compute E (ε1tHt) and E
(
ε21tHt

)
using the fact that ε1t is Gaussian.

By definition of Ht = 1 (ε1t > c), and the truncated moments of the Gaussian distribution, we obtain

that

E (ε1tHt) = σ1E (ε1t/σ11 (ε1t/σ1 > c/σ1)) = σ1ϕ (c/σ1) .

Similarly,

E
(
ε21tHt

)
= E

(
ε21t1 (ε1t > c)

)
= σ2

1[Φ (−c/σ1) + c/σ1ϕ (c/σ1)].

Thus
A1

σ2
1

= [Φ (−c/σ1) + c/σ1ϕ (c/σ1)]βh̄ + σ−1
1 ϕ (c/σ1) vh̄.

Since we can also show that

A2

σ2
1

= σ−2
1 E

(
ytε1t|Ht−1 = h̄

)
= σ−2

1 E
(
(βt−1ε1t + γt−1yt−1 + ε2t)ε1t|Ht−1 = h̄

)
= βh̄,

it follows that

b1
(
h̄
)

= (γE − γR)
A1

σ2
1

+ γR
A2

σ2
1

= (γE − γR) {[Φ (−c/σ1) + c/σ1ϕ (c/σ1)]βh̄ + σ−1
1 ϕ (c/σ1) vh̄}+ γRβh̄

= {γRβh̄ + (γE − γR) Φ (−c/σ1)}βh̄ + (γE − γR)σ
−1
1 ϕ (c/σ1) (cβh̄ + vh̄)

= CMR1

(
h̄
)
.
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B Generalization of Propositions 3.1 and 3.2

Here, we show that the results in Section 3.1 extend to a multivariate version of our model for

zt = (xt, y
′
t)
′ when Ht is exogenous.

B.1 Multivariate state-dependent structural VAR model

Let zt ≡ (xt, y
′
t)
′ denote an n × 1 vector of strictly stationary time series, where yt is k × 1 with

k = n− 1. We consider a structural state-dependent VAR process of the form

Ct−1zt = µt−1 +Bt−1 (L) zt−1 + εt, (5)

where εt = (ε1t, ε
′
2t)

′ defines the vector of mutually independent structural shocks. Let

Bt−1 (L) = B1,t−1 +B2,t−1L+ . . .+Bp,t−1L
p−1,

where p denotes the polynomial lag order. For later convenience, we partition Bt−1 (L) conformably

with zt as

Bt−1 (L) =

(
B11,t−1 (L) B12,t−1 (L)

B21,t−1 (L) B22,t−1 (L)

)
where Aij denotes the (i, j) block of any partitioned matrix A.

All model coefficients evolve over time depending on the state of the economy. In particular, as in

the main text, we let

µt−1 = µEHt−1 + µR (1−Ht−1) ,

Ct−1 = CEHt−1 + CR (1−Ht−1) , and

Bj,t−1 = BjEHt−1 +BjR (1−Ht−1) for j = 1, . . . , p,

where Ht−1 is a binary stationary time series that takes the value 1 if the economy is in expansion

and 0 otherwise. To identify the conditional impulse response function of yt+h to a shock in ε1t, we

assume that

Ct−1 =

(
1 0

−C21,t−1 C22,t−1

)
, (6)

where C21,t−1 is k × 1 and C22,t−1 is a k × k non-singular matrix whose diagonal elements are 1 by a

standard normalization condition. Under these assumptions, xt is predetermined with respect to yt.

Note that we do not restrict C22,t−1 to be lower triangular, which allows Ct−1 to be block recursive.

Hence, the model is only partially identified in that only the responses to ε1t are identified.

Model (5) covers several empirically relevant strategies for identifying the structural shock ε1t (and
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the corresponding conditional response function for yt+h with respect to ε1t). One is the narrative

approach to identification which uses information extraneous to the model to measure ε1t, in which

case xt = ε1t (as in the main text). Alternatively, the structural shock ε1t may be identified via an

exclusion restriction that precludes xt from responding contemporaneously to the structural shocks in

the remaining variables of the system. In this case, the structural shock ε1t is identified within the

nonlinear structural VAR model by analogy to Blanchard and Perotti (2002), whose exogenous shocks

to government spending (ε1t) are identified by assuming that government spending (xt) does not react

within the period to shocks to output and tax revenues (yt). Finally, note that our general model also

accommodates the special case of xt being an exogenous serially correlated observable variable, as in

Alloza, Gonzalo and Sanz (2021).

The structural model for zt can be written as
xt = µ1,t−1 +B11,t−1 (L)xt−1 +B12,t−1 (L) yt−1 + ε1t

C22,t−1yt = µ2,t−1 + C21,t−1xt +B21,t−1 (L)xt−1 +B22,t−1 (L) yt−1 + ε2t.

(7)

Without further restrictions (such as postulating that C22,t−1 is lower triangular), the parameters in

the equations for yt are not identified. However, the fact that ε1t is identified suffices to identify the

conditional response function of yt to a one-time shock in ε1t.

As in Section 3.1, we assume that Ht−1 is a function only of qt (and its lags), where qt is assumed

to be exogenous with respect to the structural shocks ε1t and ε2t. More specifically, to complete the

model, we let

Ht = η (qs : s ≤ t) . (8)

We make the following additional assumptions.

Assumption B.1 {ε1t} and {ε2t} are mutually independent structural shocks such that εt ≡ (ε1t, ε
′
2t)

′ ∼

i.i.d.(0,Σ), where Σ is a diagonal matrix with diagonal elements given by σ2
i for i = 1, . . . , n. In ad-

dition, yt is strictly stationary and ergodic.

Assumption B.2 {qt} is independent of {ε1t} and {ε2t}.

Assumption B.1 is the generalization of Assumption 1 in Section 3.1 to the multivariate model

where ε2t is a k × 1 vector. Assumption B.2 is the analogue of Assumption 2.

B.2 Conditional impulse response functions

In this section, we derive the analogue of Proposition 3.1 in the main text for the multivariate model

considered in (7) and (8). We obtain this result by first deriving the potential outcomes yt+h (e) and

9



then using these to obtain closed-form expressions for CARh

(
δ, h̄
)
and CMRh

(
δ, h̄
)
.

B.2.1 Potential outcomes

To derive the potential outcomes yt+h (e), we first obtain the reduced-form model corresponding to our

structural model (7) (which is given by (5) with the identification restriction that xt is predetermined

with respect to ε1t). Since Ct−1 satisfies the identification condition (6), the inverse matrix of Ct−1

exists and is given by

C−1
t−1 =

(
1 0

C−1
22,t−1C21,t−1 C−1

22,t−1

)
≡

(
1 0

C21
t−1 C22

t−1

)
,

where for any matrix A, we let Aij denote the block (i, j) of A−1.

Pre-multiplying (5) by C−1
t−1 yields

zt = C−1
t−1µt−1 + C−1

t−1Bt−1 (L) zt−1 + C−1
t−1εt,

which we rewrite as

zt = bt−1 +At−1 (L) zt−1 + ηt, (9)

where ηt ≡ C−1
t−1εt, bt−1 ≡ C−1

t−1µt−1, and

At−1 (L) ≡ C−1
t−1Bt−1 (L) = A1,t−1 +A2,t−1L+ . . .+Ap,t−1L

p−1,

with Aj,t−1 ≡ C−1
t−1Bj,t−1.

The potential outcome value of yt+h (e) (for any fixed e) can be obtained from the companion-form

representation of the reduced-form model (9) by iteration, fixing ε1t = e. Since only ε1t is fixed at e,

the following decomposition of the reduced-form errors ηt is useful:

ηt ≡ C−1
t−1εt =

(
1

C21
t−1

)
ε1t +

(
0

C22
t−1

)
ε2t ≡ C−1

t−1e1,nε1t + C−1
t−1I2:nε2t,

where e1,n ≡ (1, 0′)′ is n × 1 and I2:n is k × n and is equal to the n × n identity matrix with its first

column removed:

I2:n =
(

e2,n · · · en,n

)
.

We let

ηt (e) = C−1
t−1

(
e

ε2t

)
= C−1

t−1e1,ne+ C−1
t−1I2:nε2t

10



denote the counterfactual value of ηt for ε1t = e. Similarly, we denote by

zt (e) =

(
xt (e)

yt (e)

)

the counterfactual values of xt and yt. With this notation, we can write the potential outcome analogue

of (9) as

Zt (e) = at−1 +At−1Zt−1 (e) + ξt (e) . (10)

Here,

Zt
np×1

(e) =
(
z′t (e) , z

′
t−1 (e) , . . . , z

′
t−p+1 (e)

)′
, ξt (e)

np×1
=
(
η′t (e) , 0

′)′ , at−1
np×1

=
(
b′t−1, 0

′)′ ,
and

At−1
np×np

=


A1,t−1 A2,t−1 · · · Ap−1,t−1 Ap,t−1

In 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · In 0

 .

Note that at−1 and At−1 are not indexed by e because these matrices depend only on Ht−1, which

does not change with e under the exogeneity assumption on Ht. To obtain yt (e) from Zt (e), let

Sk
k×np

=
(

0k×1 Ik 0k×n(p−1)

)
denote a k× np selection matrix (with k = n− 1 equal to the number of variables in yt) which selects

the subvector yt from the vector Zt. With this notation,

yt (e) = SkZt (e) ,

and, more generally, for any h,

yt+h (e) = SkZt+h (e) .

Note that for k = 1 (i.e., for a bivariate system with n = 2), Sk = e′2,2p, where e2,2p = (0, 1, 0′) is a

2p× 1 vector whose only non-zero element is equal to 1 and occurs in position 2. More generally, we

let ej,m denote an m× 1 vector with 1 in position j and 0 elsewhere.

Next, we use the companion form (10) to obtain yt+h (e) for different values of h. Starting with

h = 0, we set Zt−1 (e) = Zt−1 since Zt−1 depends on values of zt that occur prior to the shock in ε1t.

Hence, these values do not depend on e and it follows that

yt (e) = SkZt (e) = Skat−1 + SkAt−1Zt−1 + Skξt (e) .

11



By the definition of ξt (e), we can write

ξt (e) =

(
ηt (e)

0

)
=

(
C−1
t−1e1,ne+ C−1

t−1I2:nε2t

0n(p−1)×1

)
= e1,p ⊗

(
C−1
t−1e1,ne+ C−1

t−1I2:nε2t
)
.

Hence,

Skξt (e) = Sk[e1,p ⊗
(
C−1
t−1e1,ne+ C−1

t−1I2:nε2t
)
]

= Sk[e1,p ⊗
(
C−1
t−1e1,n

)
e] + Sk[e1,p ⊗ (C−1

t−1I2:n)ε2t].

This implies that

yt (e) = Sk[e1,p ⊗
(
C−1
t−1e1,n

)
]e+ Vt,

where Vt ≡ Skat−1 + SkAt−1Zt−1 + Sk[e1,p ⊗ (C−1
t−1I2:n)ε2t] is a function of Ut ≡

(
ε′2t, qt−1, Z

′
t−1

)
. We

can obtain yt+h (e) for larger values of h using a similar approach. In particular, for h = 1, we have

that

Zt+1 (e) = at +AtZt (e) + ξt+1,

where ξt+1 =
(
η′t+1, 0

′)′ = ((
C−1
t εt+1

)′
, 0′
)′

and at, At and Ct do not depend on e. This is true

because the model coefficients depend on Ht, which is not a function of e when Ht is exogenous, and

εt+1 is independent of e since e is the fixed value of ε1t. Thus,

yt+1 (e) = SkZt+1 (e)

= Skat + SkAtZt (e) + Skξt+1

= Skat + SkAt(at−1 +At−1Zt−1 + ξt (e)) + Skξt+1

= Skat + SkAtat−1 + SkAtAt−1Zt−1 + SkAtξt (e) + Skξt+1,

where ξt (e) = [e1,p ⊗
(
C−1
t−1e1,n

)
]e + Sk[e1,p ⊗ (C−1

t−1I2:n)ε2t]. Inserting ξt (e) into the equation above

and collecting the terms that not depend on e into Vt+1 yields

yt+1 (e) = SkAt[e1,p ⊗
(
C−1
t−1e1,n

)
]e+ Vt+1,

where Vt+1 is a function of Ut+1 ≡
(
εt+1, ε

′
2t, qt, qt−1, Z

′
t−1

)′
. This result shows that the potential

outcome value yt+1 (e) is linear in e, as in the main text. This result generalizes to any value of h ≥ 1

as follows:

yt+h (e) = SkAt+h−1 · · ·At[e1,p ⊗
(
C−1
t−1e1,n

)
]e+ Vt+h ≡ mh (e, Ut+h) , (11)

where Vt+h depends on Ut+h ≡
(
εt+h, . . . , εt+1, ε

′
2t, qt+h−1, . . . , qt, qt−1, Z

′
t−1

)′
.

Equation (11) defines the potential outcomes for the vector of dependent variables yt. It represents

12



a linear function of e under the assumption that Ht = η (qs : s ≤ t) and qs is strictly exogenous with

respect to ε1t and ε2t.

B.2.2 Closed-form expressions for the conditional response functions

Next, we use (11) to generalize Proposition 3.1 to the multivariate state-dependent structural VAR

model given in (7). For any e,

yt+h (e+ δ)− yt+h (e) = SkAt+h−1 · · ·At[e1,p ⊗
(
C−1
t−1e1,n

)
]δ,

which implies that letting e = ε1t, and taking the conditional expectation, conditionally on Ht−1 =

h̄ ∈ {0, 1},

CARh

(
δ, h̄
)

≡ E
(
yt+h (ε1t + δ)− yt+h (ε1t) |Ht−1 = h̄

)
= SkE

(
At+h−1At+h−2 . . . At|Ht−1 = h̄

) (
e1,p ⊗ C−1

h̄
e1,n

)
δ.

We can also use (11) to obtain the conditional marginal response function for this model. Since yt+h (e)

is a linear function of e, it follows that

y′t+h (e) ≡
∂

∂e
mh (e, Ut+h) = SkAt+h−1 · · ·At[e1,p ⊗

(
C−1
t−1e1,n

)
].

This implies that

CMRh

(
h̄
)

≡ E
(
y′t+h (ε1t) |Ht−1 = h̄

)
= SkE

(
At+h−1At+h−2 . . . At|Ht−1 = h̄

) (
e1,p ⊗ C−1

h̄
e1,n

)
= CARh

(
1, h̄
)
,

showing that the conditional marginal response function coincides with the conditional average re-

sponse function CARh

(
δ, h̄
)
for a shock of size δ = 1.

The following proposition summarizes these results and is the analogue of Proposition 3.1 for the

multivariate model considered in (7). We let C−1
h̄

= C−1
E if h̄ = 1 and C−1

h̄
= C−1

R if h̄ = 0.

Proposition B.1 Assume the structural process is (7) and (8) with Ht = η (qs : s ≤ t). Under As-

sumptions B.1 and B.2 for h̄ ∈ {0, 1}:

(i) For any fixed δ, CAR0

(
δ, h̄
)
= Sk

(
e1,p ⊗ C−1

h̄
e1,n

)
δ, and for any h ≥ 1,

CARh

(
δ, h̄
)
= SkE

(
At+h−1At+h−2 . . . At|Ht−1 = h̄

) (
e1,p ⊗ C−1

h̄
e1,n

)
δ.

(ii) For any h ≥ 0, CMRh

(
h̄
)
= CARh

(
δ, h̄
)
.
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As in the simpler model considered in the main text, Proposition B.1 shows that when Ht depends

only on {qs : s ≤ t}, i.e., when Ht is exogenous with respect to the structural shocks εt, the two

definitions of the conditional impulse response function coincide. Next, we show that the state-

dependent local projection estimator recovers asymptotically these two notions of conditional impulse

response functions when Ht is exogenous.

B.3 Local projections estimands

A state-dependent LP regression is a direct regression of yt+h onto a constant, xt and Zt−1, each

interacted withHt−1 and 1−Ht−1. The slope coefficients associated with xtHt−1 are usually interpreted

as the CAR of yt+h, conditionally on Ht−1 = 1, whereas the slope coefficients associated with xt(1−

Ht−1) are interpreted as the CAR of yt+h when we condition on Ht−1 = 0. The goal of this section is

to derive the probability limits of these slope coefficients and show that they equal CARh

(
δ, h̄
)
when

δ = 1, which is equal to the CMRh

(
h̄
)
for h̄ ∈ {0, 1}.

Let Wt−1 ≡ (1, Z ′
t−1)

′ denote an (np+ 1)× 1 vector of control variables which include a constant

and p lags of zt. A state-dependent LP for identifying the causal effect on yt+h of a one-time shock in

ε1t of size δ = 1 can be written as

yt+h = bh (1)xtHt−1 +ΠE,hWt−1Ht−1 + bh (0)xt(1−Ht−1) + ΠR,hWt−1(1−Ht−1) + vt+h, (12)

where the k × 1 vectors bh (1) and bh (0) contain the main parameters of interest. The LP regression

for variable yj,t+h is

yj,t+h = bh,j (1)xtHt−1+π′
E,j,hWt−1Ht−1+ bh,j (0)xt(1−Ht−1)+π′

R,j,hWt−1(1−Ht−1)+ vj,t+h, (13)

where j = 2, . . . , n. The scalar coefficients bh,j (1) and bh,j (0) are the (j − 1)th elements of bh (1) and

bh (0), respectively. Similarly, π′
E,j,h and π′

R,j,h are the corresponding rows of ΠE,h and ΠR,h.

Since Ht is observed, the coefficients in the multivariate state-dependent LP regression (12) can

be obtained by running a multivariate LS regression of yt+h onto xtHt−1, Wt−1Ht−1, xt (1−Ht−1)

and Wt−1 (1−Ht−1). Note that this is equivalent to running a regression of yj,t+h onto xtHt−1,

Wt−1Ht−1, xt (1−Ht−1) and Wt−1 (1−Ht−1), for each j = 2, . . . , n. Put differently, the multivariate

LS regression (12) is equivalent to the k univariate OLS regressions (13), equation-by-equation.

Let b̂h (1) and b̂h (0) denote the LS estimators of bh (1) and bh (0) in (12) based on a sample of size

T given by {yt+h, xt, Zt−1, Ht−1 : t = 1, . . . , T}. We can estimate each of these vectors separately, by

restricting the sample to Ht−1 = 1 and Ht−1 = 0, respectively. For instance, b̂h (1) can be obtained

from a regression of yt+h on xtHt−1 and Wt−1Ht−1 (omitting xt (1−Ht−1) and Wt−1 (1−Ht−1) in
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the regression). This follows because Ht−1 (1−Ht−1) = 0 for all t. Similarly, we can obtain b̂h (0)

from a regression of yt+h on xt (1−Ht−1) and Wt−1 (1−Ht−1) (omitting xtHt−1 and Wt−1Ht−1 in

this regression).

Our next result generalizes Proposition 3.2. to the multivariate structural VAR model given in (7)

and (8).

Proposition B.2 Consider the structural process (7) and (8) with Ht = η (qs : s ≤ t). If Assumptions

B.1 and B.2 hold, then for h̄ ∈ {0, 1},

bh
(
h̄
)
≡ p lim

T→∞
b̂h
(
h̄
)
= CMRh

(
h̄
)
= CARh

(
1, h̄
)
,

where CARh

(
1, h̄
)
is the conditional average response function in Definition 1 with δ = 1.

B.4 Proofs of Propositions B.1 and B.2

Proof of Proposition B.1. The proof for h = 0 and h = 1 is in the text. We omit the proof for

general h since it follows from similar arguments.

Proof of Proposition B.2. We focus on h̄ = 1. To define b̂h (1), let

Y
T×k

=


y′1+h
...

y′T+h

 , X1
T×1

=


x1H0

...

xTHT−1

 , and X2
T×(np+1)

=


W ′

0H0

...

W ′
T−1HT−1

 ,

and define M2 = IT −X2 (X
′
2X2)

−1X ′
2.

By the Frisch-Waugh-Lovell (FWL) Theorem, b̂h (1)
′ = (X ′

1M2X1)
−1X ′

1M2Y, or

b̂h (1) = T−1(Y ′M2X1)
(
T−1X ′

1M2X1

)−1 ≡ Q̂1y.2,hQ̂
−1
11.2.

A similar expression holds for b̂h (0) with the difference that the regressors xt and Wt−1 are interacted

with 1−Ht−1 rather than Ht−1.

Our goal is to derive the probability limit of b̂h (1) (and b̂h (0)) as T → ∞. We can write

Q̂11.2 = T−1X ′
1X1 − T−1X ′

1X2

(
T−1X ′

2X2

)−1
T−1X ′

2X1, and

Q̂1y.2,h = T−1Y ′X1 − T−1Y ′X2

(
T−1X ′

2X2

)−1
T−1X ′

2X1.
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If a law of large numbers applies to each term1,

Q̂11.2
p→ Q11.2 ≡ E

(
x2tHt−1

)
− E

(
xtHt−1W

′
t−1

)
[E
(
Wt−1W

′
t−1Ht−1

)
]−1E (Wt−1Ht−1xt) , and

Q̂1y.2,h
p→ Q1y.2,h ≡ E (yt+hxtHt−1)− E

(
yt+hHt−1W

′
t−1

)
[E
(
Wt−1W

′
t−1Ht−1

)
]−1E (Wt−1Ht−1xt) .

We distinguish two cases: (i) xt = ε1t, and (ii) xt = µ1,t−1+B11,t−1 (L)xt−1+B12,t−1 (L) yt−1+ε1t =

α′
t−1Wt−1+ε1t (where αt−1 is a state-dependent vector that collects the coefficients of µ1,t−1, B11,t−1 (L)

and B12,t−1 (L)).

In case (i), it is easy to see that E
(
xtHt−1W

′
t−1

)
= 0 under the assumption that xt = ε1t is i.i.d.

and independent of ε2t. Thus,

Q11.2 = E
(
x2tHt−1

)
and Q1y.2,h = E (yt+hxtHt−1) ,

implying that2

b̂h (1)
p→ bh (1) ≡ E (yt+hxtHt−1) [E

(
x2tHt−1

)
]−1 = E (yt+hxt|Ht−1 = 1) [E

(
x2t |Ht−1 = 1

)
]−1.

In case (ii), we can show that

Q11.2 = E
(
ε21tHt−1

)
= Pr (Ht−1 = 1)E

(
ε21t|Ht−1 = 1

)
and

Q1y.2,h = E (yt+hε1tHt−1) = Pr (Ht−1 = 1)E (yt+hε1t|Ht−1 = 1) ,

implying that b̂h (1) = E (yt+hε1t|Ht−1 = 1) [E
(
ε21t|Ht−1 = 1

)
]−1. Heuristically, this follows because

by the FWL theorem, and conditioning on Ht−1 = 1, the slope coefficient associated with xt from

regressing yt+h on xt and Wt−1 can be obtained in two steps. First, we regress xt on Wt−1 (interacted

with Ht−1) and obtain the residual. Under our identification condition, this is ε1t. Then, we regress

yt+h on ε1t (interacted with Ht−1). More specifically, note that

E
(
xtHt−1W

′
t−1

)
= E

(
α′
t−1Wt−1W

′
t−1Ht−1

)
+ E

(
ε1tHt−1W

′
t−1

)
= E

(
α′
t−1Wt−1W

′
t−1Ht−1

)
,

1This follows under the assumption that zt is strictly stationary and ergodic and that the usual moment and rank
conditions on the regressors are satisfied. We leave these as implicit high level assumptions since our focus here is on
the conditions that Ht needs to satisfy in order for the LP estimator to be consistent. Kole and van Dijk (2021) (and
references therein) provide primitive conditions for stationarity and ergodicity of a Markov Switching SVAR model when
the states Ht are assumed to be a first-order exogenous Markov process. Deriving analogous primitive conditions for our
setting, when the process for the exogenous Ht is not specified, is beyond the scope of this paper.

2This result is consistent with the fact that when xt is a directly observed shock we can simply regress yt+h onto
xtHt−1 to obtain a consistent estimator of bE,h. When xt = ε1t, adding the controls Wt−1Ht−1 is not required for
consistency, but can be important for efficiency.
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since E
(
ε1tHt−1W

′
t−1

)
= 0 by Assumption B.1. It follows that

E
(
xtHt−1W

′
t−1

)
= α′

EE
(
Wt−1W

′
t−1|Ht−1 = 1

)
Pr (Ht−1 = 1) .

Hence, the term E
(
xtHt−1W

′
t−1

)
[E
(
Wt−1W

′
t−1Ht−1

)
]−1E (Wt−1Ht−1xt) equals

α′
EE

(
Wt−1W

′
t−1|Ht−1 = 1

)
[E
(
Wt−1W

′
t−1|Ht−1 = 1

)
]−1E

(
Wt−1W

′
t−1|Ht−1 = 1

)
αE Pr (Ht−1 = 1)

= α′
EE

(
Wt−1W

′
t−1|Ht−1 = 1

)
αE Pr (Ht−1 = 1)

= E
(
α′
t−1Wt−1W

′
t−1αt−1|Ht−1 = 1

)
Pr (Ht−1 = 1) .

Since x2t =
(
α′
t−1Wt−1 + ε1t

)2
= α′

t−1Wt−1W
′
t−1αt−1 +2α′

t−1Wt−1ε1t + ε21t, where the second term has

a conditional mean of zero, it follows that

Q11.2 = Pr (Ht−1 = 1)E
(
ε21t|Ht−1 = 1

)
.

One can use similar arguments to show that

Q1y.2,h = Pr (Ht−1 = 1)E (yt+hε1t|Ht−1 = 1) .

Thus, both in cases (i) and (ii), we conclude that

b̂h (1)
p→ bh (1) = E (yt+hε1t|Ht−1 = 1) [E

(
ε21t|Ht−1 = 1

)
]−1 ≡ NhD,

where Nh stands for numerator and D is the denominator. Next, we express Nh and D in terms of

the model parameters. To evaluate Nh, we use the fact that for any h, yt+h = SkZt+h, where Zt+h is

obtained from the companion-form representation of the model given by (10).

Consider first h = 0. Then

Zt = at−1 +At−1Zt−1 + ξt,

where

ξt =

(
ηt

0

)
=

(
C−1
t−1e1,nε1t + C−1

t−1I2:nε2t

0

)
= (e1,p ⊗ C−1

t−1e1,n)ε1t + e1,p ⊗ C−1
t−1I2:nε2t,

given that ηt = C−1
t−1εt and εt = C−1

t−1e1,nε1t + C−1
t−1I2:nε2t, where e1,n and I2:n are as defined in

Section B.2. Hence,

yt = SkZt = Sk(e1,p ⊗ C−1
t−1e1,n)ε1t + Sk(at−1 +At−1Zt−1) + Sk(e1,p ⊗ C−1

t−1I2:nε2t). (14)
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Using this decomposition of yt, we can write N0 = E (ytε1t|Ht−1 = 1) = N0,1 +N0,2 +N0,3, where

N0,1 = E[Sk(e1,p ⊗ C−1
t−1e1,n)ε

2
1t|Ht−1 = 1],

N0,2 = E[Sk(at−1 +At−1Zt−1)ε1t|Ht−1 = 1], and

N0,3 = E[Sk(e1,p ⊗ C−1
t−1I2:nε2t)ε1t|Ht−1 = 1].

Under Assumption 1 and applying repeatedly the law of iterated expectations (LIE), it can be shown

that N0,2 = N0,3 = 0, implying that N0 ≡ E (ytε1t|Ht−1 = 1) = N0,1. Thus,

N0 = Sk(e1,p ⊗ C−1
E e1,n)E

(
ε21t|Ht−1 = 1

)
.

Since bh (1) ≡ N0D, for h = 0, where D ≡ [E
(
ε21t|Ht−1 = 1

)
]−1, this implies the result. A similar

argument shows that

b̂h (0)
p→ bh (0) = Sk(e1,p ⊗ C−1

R e1,n) for h = 0.

Next, we consider h = 1. Now,

b̂h (1)
p→ bh (1) ≡ E (yt+1ε1t|Ht−1 = 1) [E

(
ε21t|Ht−1 = 1

)
]−1 ≡ N1D when h = 1.

To obtain N1, we can use the fact that

yt+1 = SkZt+1 = Sk(at +AtZt + ξt+1)

= Sk(at +At(at−1 +At−1Zt−1 + ξt) + ξt+1)

= SkAtξt + Sk(at +At(at−1 +At−1Zt−1)) + Skξt+1, (15)

where ξs = (e1,p ⊗ C−1
s−1e1,n)ε1s + e1,p ⊗ C−1

s−1I2:nε2s for s = t, t + 1. This implies that N1 ≡

E (yt+1ε1t|Ht−1 = 1) = N1,1 +N1,2 +N1,3, where

N1,1 = E(SkAtξtε1t|Ht−1 = 1),

N1,2 = E[Sk(at +At(at−1 +At−1Zt−1))ε1t|Ht−1 = 1], and

N1,3 = E[Skξt+1ε1t|Ht−1 = 1].

Given the definition of ξt+1, we can easily see that N1,3 = 0 by Assumption B.1, since it implies that

E
(
ξt+1|F t

)
= 0. To conclude that N1,2 = 0, we use the exogeneity condition on Ht, i.e. the fact

that Ht = η (qs : s ≤ t) with qs satisfying Assumption B.2. Under these assumptions, Ht and ε1t are

mutually independent, implying that by the LIE, we can write

N1,2 = E[Sk(at +At(at−1 +At−1Zt−1))E
(
ε1t|F t−1, Ht

)
|Ht−1 = 1],
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where F t−1 = σ (zt−1, Ht−1, zt−2, Ht−2, . . .). Since E
(
ε1t|F t−1, Ht

)
= E (ε1t) = 0, we obtain that

N1,2 = 0. Hence, N1 = N1,1. The result follows because we can show that

N1,1 = E[SkAt(e1,p ⊗ C−1
t−1e1,n)ε

2
1t|Ht−1 = 1],

under Assumption B.1 and B.2. More specifically, using the definition of ξt, N1,1 can be decomposed

as follows:

N1,1 = E[SkAt(e1,p ⊗ C−1
t−1e1,n)ε

2
1t|Ht−1 = 1] + E[SkAt(e1,p ⊗ C−1

t−1I2:nε2tε1t)|Ht−1 = 1],

where E
(
ε1tε2t|Ht,F t−1

)
= E (ε1tε2t) = 0 under our assumptions. This implies that

bh (1)=
E[SkAt(e1,p ⊗ C−1

t−1e1,n)ε
2
1t|Ht−1 = 1]

E
(
ε21t|Ht−1 = 1

) .

The result follows because the numerator simplifies to E[SkAt(e1,p⊗C−1
t−1e1,n)|Ht−1 = 1][E

(
ε21t|Ht−1 = 1

)
]

under the assumption that ε1t is i.i.d.
(
0, σ2

1

)
. A similar result holds for bh (0) when h = 1. The proof

for other values of h follows from similar arguments.
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C Parameters for the data generating process in Section 5

The data generating process in Section 5 uses the following parameter values obtained by fitting the

model to the quarterly data used in Ramey and Zubairy (2018), assuming that a recession corresponds

to periods when unemployment is above the historical mean:

CE=

 1 0 0

−0.0097 1 0

0.0056 0.0371 1

 , CR =

 1 0 0

−0.0495 1 0

−0.0510 −0.2134 1

 , kE =

 0

0.0034

0.0177

, kR =

 0

0.0145

0.1007

 ,

AE,1 = C−1
E BE,1 =

 −0.1741 0 0

0.0317 0.8185 −0.0437

−0.0586 0.7540 1.4140

 , AE,2 =

 0.4266 0 0

0.1107 −0.0105 0.1177

0.0296 −0.7467 −0.4706

 ,

AE,3 =

 0.4065 0 0

0.0889 0.2965 −0.1358

0.0168 −0.3586 0.0918

 , AE,4 =

 0.3633 0 0

0.0774 −0.1165 0.0595

0.0535 0.3428 −0.0505

 ,

AR,1 =

 0.2952 0 0

0.0088 1.6449 0.1237

0.0098 0.0450 1.4823

 , AR,2 =

 −0.0854 0 0

0.0463 −0.8551 −0.1995

−0.0051 −0.0752 −0.7047

 ,

AR,3 =

 0.1670 0 0

0.0107 0.2722 0.0245

−0.0154 0.0911 0.2347

 , AR,4 =

 −0.0331 0 0

−0.0019 −0.0869 0.0410

0.0476 −0.0333 −0.1174

 .
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D Additional simulation results

This appendix contains additional simulation results. Figures D.1 and D.2 report simulation results

when γE = 0.9, γR = −0.1 in DGP 1 and DGP 2. Figures D.3 and D.4 report the cumulative

government spending multiplier for δ ∈ {−1,−5,−10}.
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Figure D.1: Asymptotic bias of LP response when Ht = 1 (yt > 0)
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Figure D.2: LP response and decomposition of CAR when Ht = 1 (yt > 0) and δ = 5
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Figure D.3: Cumulative spending multiplier when Ht = 1 (yt > 1)
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Figure D.4: Cumulative spending multiplier when Ht = 1 (yt > MA(12))
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