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Abstract

Nonlinearities play an increasingly important role in applied work when studying

the responses of macroeconomic aggregates to policy shocks. Seemingly natural adap-

tations of the popular local linear projection estimator to nonlinear settings may fail to

recover the population responses of interest. In this paper we study the properties of

an alternative nonparametric local projection estimator of the conditional and uncon-

ditional responses of an outcome variable to an observed identified shock. We discuss

alternative ways of implementing this estimator and how to allow for data-dependent

tuning parameters. Our results are based on data generating processes that involve,

respectively, nonlinearly transformed regressors, state-dependent coefficients, and non-

linear interactions between shocks and state variables. Monte Carlo simulations show

that a local-linear specification of the estimator tends to work well in reasonably large

samples and is robust to nonlinearities of unknown form.

JEL codes : C14, C32, E52

Keywords: impulse response, local projection, nonparametric estimation, nonlinear

structural model, potential outcomes.

∗We thank seminar participants at Vanderbilt and Pittsburgh University as well as participants at the
2023 IAAE Conference for helpful comments. Jung Jae Kim and Iones Kelanemer Holban provided excellent
research assistance. This paper is based on research supported by the NSF under Grants No. SES-2417534
and SES-2417535 and by a Natural Sciences and Engineering Research Council of Canada (NSERC) Grant
No. RGPIN-2021-02663. The views expressed in this paper are those of the authors and do not necessarily
represent the views of the Federal Reserve Bank of Dallas or the Federal Reserve System.

†McGill University, Department of Economics, 855 Sherbrooke St. W., Montréal, Québec, H3A 2T7,
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1 Introduction

Impulse response analysis is a cornerstone of empirical macroeconomics. Local projections

have become a popular method for estimating impulse response functions (IRFs), especially

when the shock of interest can be directly observed. In their simplest form, local projections

consist of a sequence of OLS regressions, one for each horizon of interest. Their popularity in

no small part stems from their simplicity. The impulse response of interest may be recovered

from the estimated regressions without further transformations of the model coefficients or

the need for Monte Carlo integration methods.

These advantages seem even more compelling when estimating nonlinear responses. For

example, a large empirical literature has used generalizations of local linear projections to

evaluate state-dependent impulse responses and other nonlinear responses. As shown in

Gonçalves et al. (2021, 2024), however, seemingly natural generalizations of local linear

projections to nonlinear models may fail to recover the population responses of interest.

For example, standard state-dependent local projection estimators of how the effect of

monetary policy shocks changes with the level of government debt or of how the effect of

fiscal spending shocks changes over the business cycle are inconsistent under empirically

plausible conditions. An alternative approach that allows for state dependence of unknown

form is the nonparametric local projection (LP) estimator recently proposed by Gonçalves

et al. (2024).

The idea underlying this estimator is simple and intuitive. Consider a potential outcomes

framework that allows for a general class of nonlinear structural dynamic models. Define the

unconditional average impulse response function of an outcome variable yt+h to a shock of size

δ in the structural innovation of interest, ε1t, as the expected value of the difference between

the potential outcome with this shock and without the shock. Under the assumption that

ε1t is identified, it can be shown that the average structural impulse response function can

be estimated by a two-step procedure. One first estimates nonparametrically the conditional

mean function of yt+h given ε1t. One then takes the average over the sample of the difference

between the conditional mean function evaluated at ε1t + δ and ε1t.

A similar two-step procedure can be applied to estimate the average response function

conditional on the most recent state, with the difference that we condition on ε1t and Ωt in

the first step, where Ωt denotes the conditioning set of interest. Likewise, the second step has

to be modified by replacing the sample average of the difference between the two conditional

mean functions by a conditional average.

While this nonparametric LP estimator was originally proposed in the context of state-

dependent models, in this paper we show that variations of this approach are valid more

generally when modeling nonlinear response functions. We consider a range of nonlinear

settings that are relevant for applied macroeconomists, including processes with nonlinearly
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transformed regressors (e.g., Herrera et al. (2015), Tenreyro and Thwaites (2016), Ben Zeev,

Ramey and Zubairy (2023), Caravello and Martinez-Bruera (2024)), state-dependent coeffi-

cients (e.g., Ramey and Zubairy (2018), Alloza (2022)) and nonlinear interactions between

shocks and state variables (e.g., Caramp and Feilich (2022), Cloyne et al. (2021), (2024)).

We illustrate how to define the population impulse responses in these applications, how these

responses may be interpreted within a potential outcomes framework, and how they can be

recovered by a nonparametric LP estimator. We also provide guidance on how to implement

this estimator in practice, and we examine its ability to recover the population responses.

The paper explores several alternative ways of implementing the nonparametric LP es-

timator, allowing for sample-size dependent tuning parameters. Monte Carlo simulations

show that a local-linear specification of the nonparametric LP estimator tends to work well

in reasonably large samples and is robust to nonlinearities of unknown form. We provide

high-level conditions for the consistency of the estimator and show by simulation that it

converges toward the population response in the RMSE sense in all our applications, as the

sample size increases. We also examine how the specification of the nonlinear transformation

affects the ability of the estimator to capture the size and sign asymmetries frequently dis-

cussed in applied work (e.g., Tenreyro and Thwaites (2016), Caravello and Martinez-Bruera

(2024)).

The remainder of the paper is organized as follows. In Section 2, we introduce a general

structural dynamic model that includes three examples of data generating processes com-

monly used in applied work. Section 3 defines the nonlinear population impulse response

function of interest and contrasts our impulse response definition with an alternative defini-

tion that has been used in the literature (e.g., Koop et al. (1996)). Sections 4 and 5 discuss

identification and estimation. The simulation results are in Section 6. Section 7 contains an

empirical illustration focusing on possible nonlinearity in the response to monetary policy

shocks. The concluding remarks are in Section 8.

2 Framework

Let zt = (xt, Y
′
t )

′ denote an n × 1 vector of observed time series, where Yt = (y2t, . . . , ynt)
′.

When n = 2, we let Yt = yt. For instance, Yt could be real GDP and xt a measure of

government spending shocks or monetary policy shocks. The data generating process (DGP)

for zt is described by the system of structural dynamic nonlinear equations:

xt = φ (zt−1) + ε1t (1)

yit = ψi (xt, Y−i,t, zt−1, εit) for i = 2, . . . , n,
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where εt ≡ (ε1t, ε2t, . . . , εnt)
′ denotes a vector of i.i.d. structural shocks with mean zero and

covariance matrix Σ. φ and ψi are general nonlinear functions. Boldface is used to denote

the history of a variable up to the time period in question. For instance, zt−1 is a vector

containing zt−1, zt−2, . . . , zt−p for some lag order p which could be ∞. We let Y−i,t denote a

(n− 2)× 1 vector that excludes yit from the (n− 1)× 1 vector Yt. We use a similar notation

to define other vectors (e.g., ε−i,t corresponds to εt without the element εit).

Consistent with much of the literature, we exclude Yt from the structural equation for

xt and assume that the model is additive in ε1t. This exclusion restriction identifies the

structural shock of interest ε1t, whose causal effects on the elements of Yt we are interested

in estimating. An important special case arises when the structural shock of interest is

observed such that xt = ε1t, as in the narrative approach to identification. We assume

that ε1t is independent of the other shocks, as is standard in the literature on nonlinear

responses. We do not assume identification of (ε2t, . . . , εnt). Several models commonly used

in applied macroeconomics emerge as special cases of framework (1). Below we discuss

four stylized examples that will be used to illustrate the implementation of the proposed

estimation method and to asses its accuracy compared to alternative estimation methods.

To build intuition, first consider a simplified version of Angrist and Kuersteiner (2011)’s

Example 1, which illustrates how potential outcomes can be computed in linear structural

vector autoregressive (SVAR) models used to study the effects of monetary policy shocks

(e.g., Bernanke and Blinder (1992); Bernanke and Mihov (1998)).

Example 2.1 (Linear model) Let{
xt = ε1t,

yt = βxt + γyt−1 + ε2t,

where εt ≡ (ε1t, ε2t)
′ ∼ i.i.d.(0,Σ), and Σ = diag (σ2

1, σ
2
2).

Our second example is a model with nonlinearly transformed regressors. This model

allows for a sign nonlinearity in the responses when the magnitude of the response depends

on the sign of the shock (e.g., f(xt) = max{xt, 0}) or a size nonlinearity when the magnitude

of the response depends on the size of the shock (e.g., f(xt) = x3t ). Although the regression

model is linear in the parameters, the impulse response function is nonlinear, requiring the

use of nonstandard estimation methods (e.g., Kilian and Vigfusson (2011), Gonçalves et

al. (2021)). Models with nonlinearly transformed regressors have been used extensively

in applied macroeconomics. Examples include studies of the asymmetry in the responses

to positive and negative oil price shocks (e.g., Herrera, Lagalo and Wada (2015)) as well

as nonlinearities in the response of GDP to monetary policy shocks (e.g., Tenreyro and

Thwaites (2016), Ascari and Haber (2022)), financial shocks (e.g., Forni et al. (2024)) and

fiscal shocks (e.g., Ben Zeev et al. (2023)).
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Example 2.2 (Model with Nonlinear Regressors) Let{
xt = ε1t,

yt = βxt + ρyt−1 + cf (xt) + ε2t,

where εt ≡ (ε1t, ε2t)
′ ∼ i.i.d.(0,Σ), Σ = diag (σ2

1, σ
2
2), and f is a nonlinear function.

A third example is the state-dependent model examined in Gonçalves et al. (2024) in

which the response is allowed to differ between two observed states (e.g., expansion and

recession) based on a dummy variable indicator St−1. Models of this type have been used

extensively to study the magnitude of the fiscal multiplier, the effectiveness of monetary

policy, and the impact of uncertainty shocks in expansions and recessions (e.g., Ramey and

Zubairy (2018), Cacciatore and Ravenna 2021, Falck et al. 2021).

Example 2.3 (State-Dependent Model) Let{
xt = ε1t

yt = βt−1xt + γt−1yt−1 + ε2t,

where {ε1t} is independent of {ε2t} and εt ≡ (ε1t, ε2t)
′ ∼ i.i.d.(0,Σ), Σ = diag (σ2

1, σ
2
2). Let

βt−1 = βESt−1 + βR(1 − St−1) and γt−1 = γESt−1 + γR(1 − St−1), where St−1 is a dummy

variable indicating whether the economy is in an expansion or in a recession. Formally, we

let St = η (wr : r ≤ t) where η (·) is the composition of the indicator function and the function

of {wr : r ≤ t} used to indicate whether St equals 1 or 0. Here,
{
wr = (xr, yr, qr)

′ : r ≤ t
}
is

a set which contains the random variables used to construct St. These potentially include the

endogenous variables in the system zt = (xt, yt)
′ and their lags, as well as other exogenous

variables qt (and their lags).

A final example is inspired by Cloyne et al. (2021, 2024) and Caramp and Feilich (2024)

who consider a model in which the responses of yt+h to ε1t are allowed to be heterogeneous,

with the heterogeneity being captured by an observable variable, say, rt. For instance,

imagine a situation in which monetary policy shocks, ε1t, have an heterogeneous effect on

GDP growth, yt, that depends on the level of government debt, rt. The level of debt, in turn,

is a function of monetary policy in the previous period (xt−1) through its effect on interest

rates. The fact that the debt level is potentially correlated with the shock of interest induces

a nonlinearity that needs to be taken into account when estimating the impulse response

function. Note that this specification differs from the state-dependent model discussed earlier

in that the model coefficients do not depend on the state, but the impulse response does.
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Example 2.4 (Nonlinear Interaction Term of Shock with State) Let
xt = ε1t

yt = β21xt + β23rt + α21xtrt + γ21yt−1 + ε2t

rt = f(xt−1) + ε3t,

where {ε1t} is orthogonal to {ε2t} and {ε3t}, ε2t and ε3t are potentially correlated, xt is the

shock of interest, and rt is an observable variable that may change the effect of the policy

shock. The form of the function f is unknown and can be linear or nonlinear.

3 Population Impulse Response Functions

This section formally defines the average impulse response function and conditional average

response function in a potential outcomes framework and illustrates the application of this

framework in the context of the examples presented in the previous section.

3.1 Definitions of impulse response functions

Our goal is to identify the causal dynamic effect of a one-time perturbation in ε1t on the

outcome variable yi,t+h, where i = 2, . . . , n. For example, we may be interested in the

response of GDP growth to a one-time exogenous shock to government spending.

To accomplish this goal, we rely on the notion of potential outcomes, which we de-

scribe next. First, note that one implication of model (1) is that we can write Yt+h =

mh (ε1t, Ut+h), where mh is a (vector) function of the shock of interest ε1t and Ut+h ≡(
εt+h, εt+h−1, . . . , εt+1, ε−1,t, z

′
t−1

)′
, with ε−1,t denoting εt without ε1t. The mapping mh can

be linear or nonlinear. Given this mapping, the potential outcome associated with Yt is given

by

Yt+h (e) = mh (e, Ut+h)

where e ∈ E is any fixed value in the support of ε1t. Given e, we have a collection of random

variables given by

{Yt+h (e) : e ∈ E} .

This is analogous to the treatment effect literature, where ε1t is a binary treatment, e ∈
{0, 1}, and we obtain Yt+h (0) and Yt+h (1). In the dynamic nonlinear model (1), ε1t is a

continuous treatment so that, given the potential outcome process Yt+h (e) = mh (e, Ut+h),

the observed value of the target variable is Yt+h = mh (ε1t, Ut+h). Put differently, it is the

value that we observe when the treatment e is the random variable ε1t that generated the

observed data.

The fact that ε1t and Ut+h are mutually independent random variables can be used to
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show that the potential outcomes are independent of ε1t. This is the standard (conditional)

independence assumption used in the treatment effects literature to link functionals of po-

tential outcomes to functionals of observed data.

Our definition of the impulse response function is based on comparing the baseline value

Yt+h (ε1t) with the counterfactual value of Y at t+h that would have been observed if ε1t had

been subject to a shock of size δ, denoted Yt+h (ε1t + δ) (see, e.g. Potter 2000). In particular,

following Gonçalves et al. (2024), we adopt the following definition:

Definition 1 The average response function and the conditional average response function

of Yt+h to a shock of size δ in ε1t are defined respectively as

ARFh (δ) ≡ E (Yt+h (ε1t + δ)− Yt+h (ε1t))

CARh(δ, ω) ≡ E (Yt+h (ε1t + δ)− Yt+h (ε1t) |Ωt = ω) ,

where Ωt denotes the conditioning set.

Note that ARFh(δ) defines the unconditional average response as in Gonçalves et al.

(2021), whereas the CARh(δ, ω) defines the conditional average response as, for example,

in Gonçalves et al. (2024). Both definitions have been used in applied work.1 Because

our treatment is continuous, we compare Yt+h (ε1t + δ) against Yt+h (ε1t), where the latter

corresponds to the observed value Yt+h, whereas the former denotes the counterfactual value

Yt+h (ε1t + δ) that is not observed. Since ε1t is random, the conditional expectation in Def-

inition 1 averages over all possible realizations of ε1t (in addition to the other sources of

randomness that enter into the potential outcomes), conditionally on Ωt. The choice of ω

in CARh(δ, ω) is context-dependent. For instance, in Example 2.3 the conditioning set Ωt

is the state variable at time t − 1, i.e. Ωt = St−1, implying that ω is either 0 or 1, while in

Example 2.4 the conditioning set is Ωt = rt, implying that ω can take on any value in the

support of rt.
2

Definition 1 is not the only possible definition of the IRF. Other studies such as Koop,

Pesaran, and Potter (1996) and Kilian and Vigfusson (2011), for example, have instead

compared the two potential outcomes Yt+h(e
′) and Yt+h (e), setting e

′ = δ and e = 0, which

yields the alternative definition below.

1Alternatively, one could have considered the marginal and the conditional marginal response functions
as discussed in Goncalves at al. (2024). In this paper, we focus on responses to a shock of finite magnitude δ,
as is common in applied work (e.g., Ramey and Zubairy (2018)), rather than on responses to an infinitesimal
shock. Thus, the natural object of interest is the average response functions.

2The appropriate conditioning set depends on the context. For example, Koop et al. (1996) condition on
all the information at time t− 1 that can be used to forecast yt, while Gourieroux and Lee (2023) condition
on yt.
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Definition 2 The response function and the conditional response function of Yt+h to a shock

of size δ in ε1t are defined respectively as

ARF ∗
h (δ) = E(Yt+h (e+ δ)− Yt+h (e))

CAR∗
h(δ, ω) = E(Yt+h (e+ δ)− Yt+h (e) |Ωt = ω),

where Ωt denotes the conditioning set.

Whereas Definition 2 has been used widely in the literature, Definition 1 is more recent

(see Goncalves et al. (2021), (2024)).These two definitions are equivalent in linear models

and, more generally, when the the potential outcome is linear in e for all horizons, as would

be the case for a linear model, as in Example 2.1, or in special cases of Example 2.3 and

Example 2.4 when the conditioning sets (St−1 and rt respectively) are exogenous. In general,

however, the two definitions differ.

Figure 1 illustrates these differences by example. Consider the nonlinear DGP:

xt = ε1t

yt = 0.5yt−1 + 0.5xt + 0.3xt−1 − 0.4f(xt)− 0.3f(xt−1) + ε2t

where ε1t and ε2t are independent and have a standard normal distribution. For illustra-

tive purposes, let the magnitude of the shock be δ = 2 and the functional forms f(xt) =

max(xt, 0) and f(xt) = x3t , respectively. The solid red line in Figure 1 denotes the ARF ob-

tained as the average over the yt obtained for different realizations of ε1t, whereas the dashed

line denotes the value of ARF ∗ obtained by setting ε1t = e = 0. It is readily apparent that

in this example, the two definitions of the impulse response imply quite different measures

of the conditional expectation of yt in the absence of a perturbation.

Which approach is the more natural one? The only difference between these two ap-

proaches is the treatment of the impact period. The baseline in computing any impulse

response is the conditional expectation of yt in the absence of a perturbation δ (e.g., Potter

2000, p. 1430). In other words, the baseline is what we would have expected Yt to be in

the absence of a perturbation, possibly conditional on the history of the data. For example,

consider the expectation Et−1(.) conditionally on the history up to time t− 1. We have that

Et−1(yt) = 0.5yt−1 + 0.3xt−1 − 0.4Et−1(f(xt))− 0.3f(xt−1)

where the predetermined values are known and we imposed Et−1(ε1t) = Et−1(ε2t) = 0. This

expectation can only be evaluated by integrating f(xt) over all possible realizations of xt,

as in Definition 1. In contrast, Definition 2 evaluates this expression as f(E(xt)) = f(0).

By Jensen’s inequality, this will not yield the desired baseline for computing the population
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impulse response to a shock of magnitude δ because E(f(xt)) is not f(E(xt)). Thus, we

mainly work with Definition 1 throughout this paper. It should be noted, however, that our

approach is designed to accommodate alternative models in which the potential outcomes

are 0 or δ, for example, as illustrated in the last empirical example.

3.2 Examples

We now illustrate the implications of the potential outcome framework in the context of the

four stylized models in Examples 2.1-2.4. In linear models, the potential outcome Yt+h (e) =

yt+h (e) is linear in e for all horizons. This can be easily seen in Example 2.1, where the

potential outcome associated with any fixed value e of ε1t can be written as

yt+h (e) = βγhe+ β

∞∑
k=0,k ̸=h

γkε1t+h−k +
∞∑
k=0

γkε2t+h−k, for any e ∈ E,

where E is the support of ε1t. It follows that

ARFh (δ) ≡ E (yt+h (ε1t + δ)− yt+h (ε1t)) =
(
βγh

)
δ.

Clearly, for a linear model, the average response function is a linear function of the size of the

shock δ and, in fact, all previous definitions of the impulse response function will coincide.

In contrast, for the model with nonlinearly transformed regressors in Example 2.2, the

potential outcomes model is nonlinear in e for all h because of the nonlinearity of f (e). In

this case, the potential outcome is given by

yt+h (e) = θhe+ γhf (e) + vt+h,

and

ARFh (δ) = θhδ + γhE [f(ε1t + δ)− f (ε1t)] . (2)

It is easy to see that in this case the average response function depends nonlinearly on

δ and on ε1t through the function f which may or may not be known. Gonçalves et al.

(2021) propose a plug-in estimator for ARF in general parametric models with nonlinearly

transformed regressors. Section 5.1 explores an alternative nonparametric estimator of (2),

which allows the researcher to be agnostic about the functional form of f .

State-dependent models such as Example 2.3 are discussed at length in Gonçalves et al.

(2024). When the state is determined exogenously with respect to the system, the potential

outcome is linear in e and the CAR can be estimated using local projections. However, when

the state is endogeneous with respect to yit and/or xt, as is typically the case in practice, the

potential outcome is only linear in e on impact, but not at longer horizons. For any response

9



horizon h > 0, e enters the potential outcomes in a complicated nonlinear form, due to the

effect of ε1t on the states between t and t + h. In particular, Gonçalves et al. (2024) show

that for a simplified version of Example 2.3 where St = η(ε1t) ≡ 1(ε1t > c),

yt+1(e) = γ(e)βt−1e+ Vt+1(e),

where γ(e) = γR + (γE − γR)η(e), with η(e) = 1(e > c). The fact that St depends on

ε1t implies that the counterfactual value of γt when ε1t = e is γ(e), which introduces a

nonlinearity in yt+1(e). This in turn implies that the conditional impulse response function

CAR1(δ, s) ≡ E (yt+1 (ε1t + δ)− yt+1 (ε1t) |St = s) is a complicated nonlinear function which

depends on the state s = 0, 1.

Finally, in models with nonlinear interactions between the shock and the state, where the

state is a continuous variable, such as Example 2.4, we can show that the potential outcome

is nonlinear in e for h ≥ 1. For h = 0 the potential outcome

yt(e) = β21e+ β23rt + α21ert + γ21yt−1 + ε2t

is linear in e and a linear local projection of yt on xt, rt, xtrt and yt−1 recovers the impact ef-

fect, conditionally on rt = r. However, this is no longer true at h > 0 if rt depends nonlinearly

on past values of xt. In particular, if rt = f(xt−1) + ε3t and f is nonlinear, as we assume in

Example 2.4, a linear LP does not recover CARh(δ, r) ≡ E (yt+1 (ε1t + δ)− yt+1 (ε1t) |rt = r)

for any h > 0 because the potential outcome yt+h(e) is nonlinear in e. For example, for h = 1

yt+1(e) = β21ε1t+1 + β23rt+1(e) + α21ε1t+1rt+1(e) + γ21yt(e) + ε2t+1,

where

rt+1(e) = f(e) + ε3t+1.

The fact that rt+1(e) may depend nonlinearly on e introduces a nonlinearity in yt+1(e). For

h > 1

yt+h(e) = γ21yt+h−1(e) + ξt+h

where ξt+h does not depend on e under the assumption that xt is i.i.d. As shown in the

Appendix, in this setting

CAR0(δ, r) = (β21 + α21r)δ

CAR1(δ, r) = β23E[f(ε1t + δ)− f(ε1t)] + γ21CAR0(δ, r)

CARh(δ, r) = γ21CARh−1(δ, r) for h > 1.

Similarly to the state-dependent model, a structural shock e in a model with interaction
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terms between the shock and the conditioning variable will have a direct effect on yt through

β21 and α21 and an indirect effect through β23 due to the endogeneity of the control variable

rt.

4 Identification

As expected from the literature on treatment effects, in order to give a causal interpretation

to estimands involving observables, some form of conditional independence between potential

outcomes Yt+h (e) and ε1t needs to hold. It can be shown that, under our assumptions, ε1t in

model (1) is independent of {Yt+h (e) , e ∈ E} (see Lemma A.1 in Gonçalves et al. (2024)).

This result is instrumental in establishing identification. It is equivalent to a conditional

independence assumption.

The following proposition summarizes our identification results.

Proposition 4.1 Let zt = (xt, Y
′
t )

′ be defined by (1) and assume that εt = (ε1t, ε2t, . . . , εnt)
′

is i.i.d. (0,Σ), where Σ = diag (σ2
i ). Then,

(i) ARFh (δ) = E (gh (ε1t + δ)− gh (ε1t)), where gh (e) ≡ E (Yt+h|ε1t = e).

(ii) CARh(δ, ω) = E (gh (ε1t + δ, ω)− gh (ε1t, ω) |Ωt = ω), where gh (e, ω) ≡ E (Yt+h|ε1t = e,Ωt = ω).

The proof of Proposition 4.1 follows easily from Lemma A.1 of Gonçalves et al. (2024).

Suppose that we observe a sample {Yt, ε1t}. For any fixed e,

E [Yt+h (e+ δ)− Yt+h (e)]

=E [Yt+h (e+ δ) |ε1t = e+ δ]− E [Yt+h (e) |ε1t = e]

=E [Yt+h|ε1t = e+ δ]− E [Yt+h|ε1t = e]

≡gh (e+ δ)− gh (e) ,

where the first equality follows by the independence between the potential outcomes Yt+h (e)

and ε1t, and the second equality follows because Yt+h (e) = Yt+h when ε1t = e and Yt+h (e+ δ) =

Yt+h when ε1t = e+ δ. It follows that

ARFh (δ) ≡ E (Yt+h (ε1t + δ)− Yt+h (ε1t)) = E (gh (ε1t + δ)− gh (ε1t)) .

The identification of CAR(δ, ω) proceeds in a similar manner. Suppose that we observe

a sample {Yt, ε1t,Ωt}. For any fixed e and ω, define gh(e, ω) = E(Yt+h|ε1t = e,Ωt = ω). We
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can write

E [Yt+h(e+ δ)− Yt+h(e) | Ωt = ω]

=E [Yt+h(e+ δ) | ε1t = e+ δ,Ωt = ω]− E [Yt+h(e) | ε1t = e,Ωt = ω]

=E [Yt+h | ε1t = e+ δ,Ωt = ω]− E [Yt+h | ε1t = e,Ωt = ω] .

The conditional independence between Yt+h(e) and ε1t, given Ωt, justifies the first equality

above. This condition holds because Yt+h(e) depends on e and Ut+h, where Ut+h is inde-

pendent of ε1t by construction. Thus, the conditional independence assumption of potential

outcomes and the shock of interest holds for any choice of Ωt. It follows that

CARh(δ, ω) = E (gh (ε1t + δ, ω)− gh (ε1t, ω) |Ωt = ω) . (3)

The conditional expectation in (3) simplifies to CARh(δ, ω) = E (gh (ε1t + δ)− gh (ε1t))

whenever ε1t is independent of Ωt. This occurs in Example 2.3 where Ωt = St−1 if St−1 is

determined based on zt−1, including past values of ε1t. This is also true in Example 2.4

where Ωt = rt and rt is a function of zt−1. Note that this would no longer be true if rt was

a function of zt (and hence of ε1t).

These results suggest that it is feasible to use a nonparametric approach to estimating

ARFh(δ) and CARh(δ, ω), as discussed in the next section.

5 Estimation

5.1 Nonparametric estimators of ARFh(δ) and CARh(δ, ω)

Having defined the impulse response functions of interest and having derived them in our

stylized examples, the next step is to discuss the proposed estimation method. Our approach

is based on Proposition 4.1.

Throughout this section, we assume without loss of generality that Yt+h is a scalar random

variable so that we may write Yt+h = yt+h (otherwise, the results that follow apply to yi,t+h,

a typical ith element of Yt+h). We also assume for simplicity that we observe the shock of

interest ε1t, which corresponds to the empirically relevant case when ε1t is identified by a

narrative approach. However, we discuss in Section 5.2 how to extend our estimation method

to the more general case when ε1t is estimated in a preliminary step.

Consider first ARFh (δ) ≡ E (yt+h (ε1t + δ)− yt+h (ε1t)). Given Proposition 4.1, we can

write ARFh (δ) = E (gh (ε1t + δ)− gh (ε1t)), where gh (e) ≡ E (yt+h|ε1t = e) is the conditional

expectation of yt+h, given ε1t = e. This result suggests the following estimator of ARFh (δ).

Algorithm 5.1 (Unconditional Average Response) Given a sample {yt, ε1t, : t = 1, . . . , T},

12



1. Obtain a nonparametric estimator ĝh (e) of gh (e) ≡ E (yt+h|ε1t = e).

2. Estimate ARFh (δ) as

ÂRF h (δ) =
1

T

T∑
t=1

(ĝh (ε1t + δ)− ĝh (ε1t)) .

The estimator ÂRF h (δ) is in fact a semiparametric two-step estimator of ARFh (δ),

where the first-step is based on nonparametric regression. Specifically, we can view ARFh (δ)

as the solution of a population moment condition given by

E [m (ε1t, ARFh (δ) , gh)] = 0,

where m (ε1t, ARFh (δ) , gh) = ARFh (δ)− [gh (ε1t + δ)− gh (ε1t)], showing that the moment

condition is linear in the parameter of interest ARFh (δ) and the conditional mean function

gh. The estimator ÂRF h (δ) is the solution of the empirical moment condition,

1

T

T∑
t=1

m
(
ε1t, ÂRF h (δ) , ĝh

)
= 0,

where ĝh is a first-step estimate of gh. Hence, ÂRF h (δ) is a two-step M-estimator where the

first step is a nonparametric regression.

The asymptotic properties of ÂRF h (δ) can be derived using existing results in the semi-

parametrics literature (see e.g. Newey and McFadden (1994)). The following result provides

a set of high-level conditions on gh and ĝh under which ÂRF h (δ) is consistent for ARFh (δ)

as T → ∞, for fixed δ and h.

Proposition 5.1 Consider a bivariate version of model (1) with xt = ε1t where εt =

(ε1t, ε2t)
′ is i.i.d. (0,Σ), with Σ = diag (σ2

i ). If (i) E |gh (ε1t)| <∞ and E |gh (ε1t + δ)| <∞,

and (ii) supt=1,...,T |(ĝh (ε1t + δ)− ĝh (ε1t))− (gh (ε1t + δ)− gh (ε1t))| →p 0, then ÂRF h (δ)−
ARFh (δ) →p 0 as T → ∞.

The proof of Proposition 5.1 follows easily by noting that we can decompose the difference

ÂRF h (δ)− ARFh (δ) as the sum of two averages,

1

T

T∑
t=1

[ĝh (ε1t + δ)− ĝh (ε1t)]− [gh (ε1t + δ)− gh (ε1t)] (4)

and
1

T

T∑
t=1

[gh (ε1t + δ)− gh (ε1t)]− E [gh (ε1t + δ)− gh (ε1t)] . (5)
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Since ε1t is i.i.d., (5) converges to zero in probability by a law of large numbers provided

E |gh (ε1t + δ)− gh (ε1t)| <∞, which is implied by condition (i) in Proposition 5.1. Condition

(ii) implies that (4) converges to zero in probability, yielding the consistency of ÂRF h(δ)

towards ARFh(δ). This high-level condition is implied by the uniform convergence of ĝh (e)−
gh (e) to zero over e ∈ E, when E = R. Allowing for unbounded support is important here

because our estimator involves evaluating ĝh at ε1t and ε1t + δ. Hence, uniform convergence

of ĝh (e) − gh (e) over a bounded set E is not enough as the probability of gh (ε1t + δ) /∈ E

will be strictly positive no matter how large T is.

Providing primitive conditions for uniform convergence of ĝh(e) over e ∈ R in our setting

appears challenging and best left for future research. Most of the nonparametrics literature

assumes bounded regressors, with a few exceptions. One is Hansen (2008), who derives

uniform convergence rates for local constant and local linear regression estimators under

the assumption that the data are stationary strong mixing time series without assuming a

bounded support, see in particular his Theorems 8 and 10. In our notation, an application

of these results would translate to bounds on sup|e|≤cT
|ĝh (e)− gh (e)|, where cT is diverging

slowly to infinity. Whether these results extend to uniform convergence over unrestricted

Euclidean spaces (i.e., with cT = +∞) is unclear to us. Similarly, Chen and Christensen

(2015) derive uniform convergence rates for general linear sieve estimators allowing for weakly

dependent time series and potentially unbounded support. However, to obtain more refined

(optimal) bounds for splines and wavelets series estimators, they assume bounded regressors

(see e.g., their Theorem 2.1). More recently, Ballerin (2024) shows the consistency of a

semiparametric sieve estimator of an average impulse response function for a special case

of our model (1).3 Ballerin (2014) assumes bounded support on the data, but changes the

nature of the structural shock of interest to ensure that its values are always inside the

bounded interval. Hence, his and our definitions of the impulse response function differ.

Next, we propose a two-step estimator of the conditional average response function.

Given Proposition 4.1, we can write CARh (δ, ω) = E (gh (ε1t + δ, ω)− gh (ε1t, ω) |Ωt = ω),

where gh (e, ω) ≡ E (yt+h|ε1t = e,Ωt = ω) is the conditional expectation of yt+h, given ε1t = e

and Ωt = ω.

The following algorithm describes our estimator of CARh (δ, ω) when Ωt and ε1t are

mutually independent. This assumption holds whenever we choose the conditioning set Ωt

as a function of exogenous variables or lagged dependent variables variables zt−1, as is often

the case in applications. One example is Example 2.3, where Ωt = St−1 and St−1 is a function

of zt−1. The independence between Ωt and ε1t also holds in Example 2.4, where Ωt = rt and

rt = f(xt−1) + ε3t and ε1t and ε3t are independent random shocks.

3In particular, Ballerin (2024) assumes that the function ψi in yit = ψi (xt, Y−i,t, zt−1, εit) is linear in
Y−i,t,yt−1 and εit, only allowing for nonlinearity in xt and its lags. A special case of this model is Example
2.2. Ballerin (2024)’s semiparametric estimator exploits the linearity and additivity of the function ψi and
hence differs from our estimator.
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Algorithm 5.2 (Conditional Average Response) Given a sample {yt, ε1t,Ωt, : t = 1, . . . , T},

1. Obtain a nonparametric estimator ĝh (e, ω) of gh (e, ω) ≡ E (yt+h|ε1t = e,Ωt = ω).

2. Estimate CARh (δ, ω) as

ĈARh(δ, ω) =
1

T

T∑
t=1

(ĝh (ε1t + δ, ω)− ĝh (ε1t, ω)) .

As in Algorithm 5.1, any nonparametric approach can be used to estimate gh (e, ω). We

will provide specific examples in Section 5.3. Consistency of ĈARh (δ, ω) follows under a

set of high-level conditions similar to those provided in Proposition 5.1. The only difference

is that the conditional expectation function is now gh(e, ω) rather the univariate regression

gh(e).

The independence assumption between Ωt and ε1t is used to simplify the second step in Al-

gorithm 5.2 since under this assumption we can write CARh(δ, ω) = E (gh (ε1t + δ, ω)− gh (ε1t, ω)).

Thus, CARh(δ, ω) can be estimated as the sample average of a nonparametric regression over

the sample values of ε1t, holding Ωt = ω fixed. This is known as a partial means estimator in

the nonparametrics literature (see e.g., Newey (1994), who derives the asymptotic variance

of partial means M-estimators based on kernel regressions for i.i.d. data).

Remark 1 When Ωt and ε1t are not independent, Proposition 4.1 suggests that we replace

the sample average over ε1t in step 2 of Algorithm 5.2 with the difference of two nonpara-

metric regressions, one where we regress ĝh(ε1t + δ, ω) on Ωt, and another where we regress

ĝh(ε1t, ω) on Ωt. The new estimator of CARh(δ, ω) is the difference between these two non-

parametric regressions evaluated at Ωt = ω.

5.2 More general specifications for xt

Algorithm 5.1 assumes that we observe ε1t, which corresponds to the empirically relevant

case where xt = ε1t. For example, often xt is a fiscal or monetary policy shock constructed

using the narrative approach to identification. However, nothing in our approach prevents

us from allowing for serial correlation in xt or from replacing the assumption of exogeneity

by the weaker assumption that xt is predetermined, as discussed in Gonçalves et al. (2021,

2024). Setting xt = φ (zt−1)+ ε1t, as we do in model (1), is consistent with this more general

specifications for xt and allows for identification of ε1t. Note that unlike in Gonçalves et al.

(2021, 2024), we do not assume that the functional form of φ is known.

When ε1t is not observed, we can apply the previous algorithm with ε1t replaced with

ε̂1t, an estimate of ε1t provided this structural shock is identified. In this case, the algorithm

becomes a three-step method, where the first step is the estimation of ε1t. When φ is a
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parametric nonlinear function, we can estimate ε1t by nonlinear least squares. When φ

is a nonparametric function, ε̂1t can be obtained by nonparametric regression. It can be

shown that broadly similar simulation results hold for such less restrictive DGPs using this

three-step nonparametric local projection estimator.

5.3 Possible choices of nonparametric estimators of gh

5.3.1 Local linear regression

In this section, we briefly review how to obtain ĝh (e) and ĝh (e, ω) using a local linear kernel

regression estimator.

Starting with ĝh (e), the local linear (LL) estimator approximates the regression function

gh (e) ≡ E (yt+h|ε1t = e) using a local linear regression for ε1t around e. More specifically,

noting that yt+h = gh (ε1t) + ε1t, the approximating model is

yt+h = gh (e) + g′h (e) (ε1t − e) + vt+h, (6)

where g′h (e) = ∂gh (e) /∂e and vt+h denotes an error term. We define the LL estimator of

the intercept αh (e) ≡ gh (e) and the slope parameter βh (e) ≡ g′h (e) in (6) as the solution to

the following minimization problem:

(ĝh (e) , ĝ
′
h (e)) = arg min

αh,βh

T−h∑
t=1

K

(
ε1t − e

b

)
(yt+h − αh − βh (ε1t − e))2 , (7)

where K denotes a kernel function and b is a bandwidth parameter. Next we rewrite the

solution to this optimization problem in closed form as follows. For fixed e, let

zt (e) =

(
1

ε1t − e

)
and ϕh(e) ≡

(
αh(e)

βh(e)

)
=

(
gh (e)

g′h (e)

)
.

With this notation, the local projection model underlying the LL estimator is

yt+h = zt (e)
′ ϕh (e) + vt+h.

The LL estimator of ϕh (e) is the weighted least squares estimator defined as

ϕ̂h (e) =

(
T−h∑
t=1

K

(
ε1t − e

b

)
zt (e) z

′
t (e)

)−1 T−h∑
t=1

K

(
ε1t − e

b

)
zt (e) yt+h

= (Z ′KZ)
−1
Z ′KY,

where Z is the (T − h) × 2 matrix with typical row given by z′t (e) = (1, ε1t − e), Y =
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(y1+h, . . . , yT )
′ and

K
(T−h)×(T−h)

=


K
( ε1,1−e

b

)
0 0

0
. . . 0

0 0 K
(

ε1,T−h−e

b

)
 .

Given ϕ̂h (e), our object of interest is the intercept α̂h(e) as this is the estimate of gh (e) .
4

The LL estimator depends on two tuning parameters, the kernel function K and the band-

width parameter. One example of K is the Gaussian kernel given by

K (u) =
1√
2π

exp

(
−u

2

2

)
.

Another popular example is the Epanechnikov kernel defined as

K (u) =

{
3

4
√
5

(
1− u2

5

)
if |u| <

√
5

0 otherwise.

In the simulations reported below, we use a Gaussian kernel. The choice of bandwidth b is

important. Theoretically, b → 0 as T → ∞, but b needs to satisfy additional conditions. In

the simulations we use the Fan and Gijbels (1996) rule of thumb for a univariate kernel (i.e.

Example 2.1.

Remark 2 Given ĝh(e), we implement step 2 of Algorithm 5.1 by taking the average of

ĝh (ε1t + δ) − ĝh (ε1t) over t = 1, . . . , T . Note that t starts at 1 rather than 1 + h since we

observe ε1t for t = 1, . . . , T .

Remark 3 If the object of interest is the average response function of yt+h with respect to

ε1t given by Definition 2, only the first step of Algorithm 5.1 is needed since we do not need

to integrate out the randomness of ε1t. Rather we fix ε1t at e+δ and e, respectively. Although

this is a one-step estimator, its convergence rate is slower than that of the semiparametric

two-step estimator proposed in Algorithm 5.1. Averaging over ε1t in the second step yields a√
T -convergent estimator whereas a nonparametric estimator of the average impulse response

function given in Definition 2 will result in a slower rate of convergence (equal to
√
Tb where

b→ 0 as T → ∞ when using a kernel regression to estimate gh (e)).

Remark 4 A researcher interested in estimating the conditional average impulse response

function can employ a LL estimator. In the state-dependent case (Example 2.3) the non-

parametric regression involves a continuous variable, the shock ε1t, and a discrete variable,

4An alternative approach would be to use a local polynomial estimator of degree higher than one such as
a local quadratic kernel estimator (see Fan and Gijbels (1996)).
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the state St−1, which can be estimated using the frequency-based approach or the mixed kernel

approach described in Li and Racine (2006). In the model with interaction (Example 2.4), we

use the multivariate version of the LL estimator. Having obtained an estimate of ĝ (e, ω), the

second step of Algorithm 5.2 algorithm amounts to taking the average of ĝ (e+ δ, ω)− ĝ (e, ω)
over t = 1, . . . , T .

In the following simulations, Gaussian kernels are used in the LL estimation. We use a

frequency-based approach for the state-dependent model and in the model with interac-

tion between the shock and the state, we select the bandwidths following Henderson and

Parameter’s (2012) rule of thumb for each variable for multivariate kernels

5.3.2 Power series (polynomial) estimators

An alternative to using kernel regression to estimate gh(e) is to use a sieve estimator. The

method of sieves approximates gh(e) by a sequence of basis functions that become increasingly

flexible as the sample size grows. Although many different basis functions can be used, we

focus here on power series. Let PL(ε1t) be the first L terms of a sequence of approximating

polynomial functions PL(e) = (e, e2, ...eL). Then, an estimate of gh(e) can be constructed

by regressing the observed values of yt+h on PL(ε1t). Having obtained an estimate ĝh(e), we

can estimate ARFh(δ) following the steps in Algorithm 5.1.

The resulting polynomial estimator resembles the nonlinear local projections estimator

proposed in Jordà (2005) in the use of a power series, but differs in two dimensions. First, the

polynomial terms are functions of e and not of zt. This matters because the number of terms

to be estimated in our approach increases one for one with the order of the approximation,

regardless of the dimension of zt, making our approach more parsimonious. This mitigates

the curse of dimensionality that undermines the feasibility of nonparametric estimation in

larger nonlinear models. Second, we compute ARFh(δ) by averaging over ĝh (ε1t + δ)−ĝh (ε1t)
rather than computing the marginal response.

6 Simulation Results

This section studies the small-sample and large-sample accuracy of the nonparametric LP

estimator. It presents simulation results for DGPs with nonlinearly transformed regressors,

state-dependent coefficients, and nonlinear interactions between the shock and the state,

respectively.

6.1 Model with Nonlinearly Transformed Regressors

We focus on the case where xt is an observed i.i.d. shock, as in the narrative approach to

identification. The order of the lag polynomials in the equation for yt is set to p = 1 as in
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Examples 2.2-2.4. Specifically, our DGP is given by:

xt = ε1t

yt = 0.5yt−1 + 0.5xt + 0.3xt−1 − 0.4f(xt)− 0.3f(xt−1) + ε2t.

We consider two alternative nonlinear regressors: f(xt) = max{xt, 0} and f(xt) = x3t ,

respectively.5

The population innovations ε1t and ε2t are assumed to be i.i.d. N(0, 1). The sample size

is T ∈ {250, 500, 1000, 2000}. T=250 corresponds to sligthly more than 60 years of quarterly

data or 20 years of monthly data, whereas T=500 can be thought of as slightly more than

40 years of monthly data. The larger values of T are used to illustrate the convergence

properties of the estimator. The number of Monte Carlo trials is 5,000.

For each draw from the DGP, we estimate the unconditional impulse response function of

yt+h, h = 0, 1, . . . , H to a shock in ε1t of magnitude δ = 2. Results for a shock of magnitude

δ = 1 are qualitatively similar. An important question is how to choose the kernel and the

bandwidth. We use a second-order Gaussian kernel for the local linear estimator and select

the bandwidth using Fan and Gijbels (1996, section 4.2) rule-of-thumb (hereafter ROT).

The order of the polynomial for the preliminary polynomial regression used in ROT is set

to 2.6 We also consider a power series estimator with the order of the series chosen as

L = round(0.5 ∗ T 1/3).

Figures 2 and 3 plot the bias, variance, and RMSE for various sample sizes when f(xt) =

max{xt, 0} and f(xt) = x3t , respectively. Estimation results for the parametric plug-in

estimator of Gonçalves et al. (2021) are obtained under the assumption that the researcher

knows the exact functional form of the nonlinearity. Both figures confirm that the plug-in

estimator is consistent when the model is correctly specified and works extremely well even

for small samples. Similarly, the local linear estimator, which does not require the researcher

to select the form of nonlinearity a-priori, is consistent albeit at a slower rate.

For the power series estimator, the sign of the bias changes depending on the order

of the polynomial which changes with T . The bias declines more slowly than the bias of

the local linear estimator. Not surprisingly, when the order of the polynomial L is large

(i.e., L = 9 when T = 2000), both the bias and the variance increase, resulting in a high

RMSE. In brief, for this particular functional form and method of selecting L, the local

5These functional forms are motivated by the empirical macroeconomics literature. f(xt) = max{xt, 0}
has been used extensively in studies of asymmetries in the effects of oil price shocks and other shocks,
and f(xt) = x3t has been used in Tenreyro and Thwaites’ (2016) analysis of monetary policy shocks, while
f(xt) = x2t has been used by Ben Zeev et al. (2020, 2023) and Forni et al. (2024) to investigate nonlinear
effects of fiscal and monetary policy shocks. The simulation results for the latter specification are very similar
to those for f(xt) = x3t and, hence, are omitted.

6Given the rate of convergence of power series estimators discussed in Newey (1994, 1997), an alternative
would have been to select L = T 1/3. However, this would have led to the selection of higher-order polynomials
and an even higher variance for large T than reported in our simulations.
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linear estimator appears to converge at a faster rate. In contrast, when the DGP involves

f(xt) = x3t , the power series estimator has a smaller RMSE than the local linear estimator,

as long as the number of terms in the polynomial approximation PL(e) is not too large. This

is not surprising, as the power series estimator includes the population model specification

as a special case.

Clearly, in small samples, it is hard to beat the plug-in estimator in terms of the RMSE

when the functional form is correctly specified. However, when the researcher wants to

remain agnostic about the functional form of the nonlinear regressor, the nonparametric LP

estimator is a good alternative. To illustrate why this is the case, as well as the cost of

model misspecification, next we provide simulation results for the case when a polynomial

of third degree exists in population, f(xt) = −2.29x2t + 5.66x3t , but the researcher estimates

the model using either the second power (x2) or third power (x3) term alone in the plug-

in estimator. For reference, we also include the results for the plug-in estimator when the

functional form of f(xt) is correctly specified. The selection of the bandwidth, b, for the

local linear estimator and the polynomial order, L, for the power series estimator is done

using the sample size-dependent rules of thumb described before.

As Figure 4 illustrates, even for relatively small shocks, δ = 1 and large samples, T =

2000, the bias of the misspecified plug-in estimator can be large. In fact, when the researcher

misses the second-order term, the bias does not decrease with the sample size, resulting in

a large RMSE for the plug-in estimator that uses f(xt) = x3t regardless of the magnitude of

the shock. When the researcher ignores the third-order term and uses a plug-in estimator

that assumes f(xt) = x2t , the bias is greater than that of the nonparametric estimator for

small shocks δ = 1. However, the larger variance of the nonparametric local linear estimator

results in a larger RMSE for small samples. As the sample size increases, the nonparametric

local linear estimator exhibits a smaller RMSE at short horizons for δ = 1 and comparable

RMSE for δ = 2. In summary, if the researcher is uncertain about the functional form of

f(xt) and prefers to remain agnostic, the nonparametric estimator that uses a local linear

kernel regression provides an alternative estimator that is consistent and has reasonably good

small-sample properties.

6.2 State-dependent model

Next, we turn to the state-dependent model, as in Example 2.3. The DGP is of the form{
xt = ε1t

yt = βt−1xt + γt−1yt−1 + ε2t.
(8)

For simplicity and because this corresponds to the most common specification used in

empirical work, we assume that there are only two states (e.g. expansions and recessions).
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Thus, we have that βt−1 = βESt−1 + βR (1− St−1) and similarly for γt−1, where St−1 =

1 (yt−1 > 0) is a binary stationary time series that takes the value ω = 1 if the economy

is in expansion, where yt−1 > 0, and ω = 0 otherwise. For expository purposes, we set

βE = 2.5, βR = 3.5, γE = 0.9, γR = −0.1 in the DGP. As previously, ε1t and ε2t are mutually

independent i.i.d. N(0, 1) structural innovations. With these parameter values, we have

about 70% of the data in expansion, which mimics reality.

Given that St−1 is discrete while ε1t is continuous, we estimate the local linear (LL) kernel

regression using the frequency-based approach (see Li and Racine, 2006).7 As before, we use

a second-order Gaussian kernel for the continuous variable. The bandwidth for this variable

is selected using the ROT bandwidth, as previously described, for each state. We also report

results for the case when the bandwidth is set to twice the ROT bandwidth to illustrate the

bias-variance trade-off. We compare this nonparametric LP estimator to the conventional

state-dependent LP estimator commonly used by practitioners for two sample sizes, T = 250

and T = 1000. The latter estimator does not recover the average response function when

the state is endogenous, except on impact (see Gonçalves et al. (2024)).

Figure 5 reports the population responses, the mean estimated response, bias, and the

RMSE for horizon h = 0, . . . , 7 when the magnitude of the shock is δ = 2, which is equiv-

alent to a shock of two standard deviations. We employ 5,000 Monte Carlo draws in the

simulations. As the figure illustrates, for δ = 2 the nonparametric LP estimator comes close

to recovering the population CAR, while the state-dependent LP estimator does not. As the

figure illustrates, the bias of the LP does not disappear as the sample size increases. The

results for δ = 1 (not reported here, but available from the authors upon request) are sim-

ilar except that the differences between the state-dependent LP and the nonparametric LP

estimator are smaller. That the difference between the two estimates is smaller for smaller

shocks is to be expected as the state-dependent LP estimates a marginal response; hence,

the two estimates will get closer, as the size of the shock decreases. Conversely, as the size of

the shock increases, the asymptotic bias of the state-dependent LP estimator increases. As is

typical for nonparametric estimators, in finite samples there is a trade-off between bias and

variance. This trade-off depends on the value of the DGP parameters. For larger samples

and with appropriate bandwidth selection, the RMSE of the nonparametric LP declines.

7Alternatively, the researcher could use the method proposed by Racine and Li (2004) for mixed data
with the Aitchinson and Aitken (1976) kernel for the discrete variable. Since we only have two states and
enough observations in each state, we follow the simpler frequency-based approach.
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6.3 Model Interacting Shock and State

Finally, we provide simulation results for a model in which the shock interacts with a con-

tinuous state variable and the latter is endogenous. The DGP takes the form:
xt = ε1t

yt = β21xt + β23rt + α21xtrt + γ21yt−1 + ε2t

rt = f(xt−1) + ε3t,

with β21 = 0.5, β23 = 0.2, α21 = 0.4 and γ21 = 0.6. We consider three nonlinear functional

forms: f(xt) = max(0, xt) in Figure 6, f(xt) = x2t in Figure 7, and f(xt) = x3t in Figure

8. When computing the CAR(δ, r) we set r = r, the sample average of rt, but one could

condition on any value of interest. As in the previous sections, the nonparametric estimator

of g(e, r) is obtained using a local linear (LL) kernel regression. We employ a second-order

Gaussian kernel and present results for two bandwidths that illustrate the bias-variance

trade-off faced by the researcher. The plots show the mean estimate of the responses, the bias,

and the RMSE for two possible bandwidths. The blue line (LL1) illustrates the case when

the normal reference rule-of-thumb bandwidth for a second-order bivariate Gaussian kernel is

used in the nonparametric estimation of g(e, r). Following Henderson and Parmeter (2012),

we set the rule-of-thumb constant to one, and let the bandwidth for xt and rt equal to b
x
ROT =

σ̂xT
−1/6 and brROT = σ̂rT

−1/6, respectively.8 Here, σ̂x denotes the sample standard deviation

of xt and σ̂r is defined similarly. Then, to illustrate how the choice of bandwidth affects the

bias, variance, and RMSE, we report simulation results for a larger bandwidth set to twice

the ROT bandwidths defined above. The simulation results for these larger bandwidths are

depicted by the red lines (LL2). We compare the performance of the nonparametric LP

estimator with that of the nonlinear LP estimator (dashed line) used by Caramp and Feilich

(2024). This local projection is given by

yt+h = αh + ψhεt + βhrt−1 + γhrt−1εt + ωt+h (9)

and the impulse response conditional on rt−1 = r̄ is computed as ψh + γhr̄, and r̄ denotes

the sample average.

As expected, given the results in Gonçalves et. al (2021, 2024), the nonlinear LP response

estimator displays asymptotic bias for any h > 0. The intuition is similar to the state-

dependent model: if the conditioning variable is endogenous, a local projection as defined

in (9) will not take into account how the shock will affect the conditioning variable in the

future. Unless the conditioning variable is exogenous, a nonlinear LP that estimates the

8Note that the order of the kernel (the first non-zero moment) is ν = 2 and, given that we include two
variables in the estimation, q = 2. Hence, the normal reference rule-of thumb constant equals 1 and the

optimal bandwidth for the lth variable is given by σ̂lT
−1

2ν+q = σ̂lT
−1
6 .
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conditional impulse response function as ψh+ γhr̄ will only consistently estimate the impact

effect. The size of the asymptotic bias at higher horizons will depend on the DGP. As in

the previous examples, the nonparametric LP estimator incurs a cost in terms of variance

(as evidenced by the RMSE), especially for small samples due to the slow convergence rate.

However, the bias of the nonlinear LP estimator can be substantial and will not disappear

even in very large samples.

7 Empirical Illustration

To illustrate how estimates obtained using a commonly used nonlinear LP and our nonpara-

metric LP estimates may differ, we apply both methods to study the role of privately-held

government debt in the transmission of monetary policy shocks. A generalization of the

nonlinear variant of the LP method described in (9) has recently been employed by Caramp

and Feilich (2024) to test the implications of a New Keynesian model that predicts that mon-

etary policy is less effective when an economy has a higher level of government debt. Indeed,

they find empirical evidence in support of their model and thus suggest that the common

textbook idea that the level of government debt does not affect the efficacy of monetary

policy should be revised.

We consider a nonlinear local projection specification that closely follows the specification

in Caramp and Feilich (2024). Their LP specification is given by

∆yt+h = αh + ψhεt + βhrt−1 + γhrt−1εt +
I∑

i=1

X t−iθh + ωt+h (10)

where yt is an outcome variable of interest, rt is the measure of privately-held U.S. government

debt provided by Hall et al. (2018) and standardized as in Caramp and Feilich (2024), εt

is the narrative measure of monetary policy shocks derived in Wiedland and Yang (2020),9

h = 0, . . . , 36 and I = 12. The outcomes of interest, yt+h, comprise the industrial production

index, the consumer price index for all urban consumers (CPI), the unemployment rate, and

the effective federal funds rate. The control variables,X t−i, include lags of the shocks, the log

of industrial production (IP), the log of the CPI, the log of the PPI, the unemployment rate,

and the federal funds rate. The data span the period between March 1969 and December

2007. The Caramp-Feilich LP estimator of the impulse response is then given by βh+γhrt−1,

where rt−1 is equal to a given value, e.g., the mean value of rt. As additional controls, we

also include lags of the producer price index for all commodities (PPI).

Nonparametric local projection estimates of CAR are obtained following the steps de-

scribed in Algorithm 5.2. That is, the nonparametric estimate of g(e, r) corresponds to a

9Their measure extends Romer and Romer (2004) narrative monetary policy shocks.
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local linear kernel estimator with a second-order Gaussian kernel and bandwidths selected

using the rule-of-thumb bandwidths described in Section 6.3. The Caramp-Feilich LP and

nonparametric LP estimates of the CAR are evaluated at the mean debt and at a ’high debt’

level (defined as the mean plus one standard deviation). We report cumulative responses to

a 25 basis point monetary policy shock.

Consistent with Caramp and Feilich (2024), the nonparametric LP estimates in Figure

9 (solid line) indicate that the sensitivity of industrial production and unemployment to

monetary policy shocks is lower when government debt is high. The nonparametric LP

estimates suggest a larger effect of monetary policy on industrial production and employment

than the Caramp-Feilich LP estimator (dashed line) regardless of the size of the debt. We

also find a smaller reduction in the effectiveness of monetary policy when government debt

is high.

There are three key reasons why the magnitudes of the Caramp-Feilich estimates differ

from those of the nonparametric LP estimates. One is the fact that the nonparametric LP

estimates account for the endogeneity of government debt with respect to monetary policy

shocks. Another reason is the fact that we examine the effect of a non-negligible policy shock

of 25 basis points. Finally, these differences may also stem from the less parametric nature

of our approach.

8 Concluding Remarks

In recent years, nonlinearities in the responses of macroeconomic aggregates to shocks have

received increasing attention in applied work. In this paper, we examined in depth a re-

cently proposed nonparametric LP estimator of the conditional and unconditional nonlinear

responses of an outcome variable to a directly observed identified shock, as is common in

applied work. We observed that this estimator may also be adapted to allow for richer

dynamics and identified shocks subject to estimation uncertainty.

The nonparametric LP estimator has four advantages. First, it provides an alternative to

existing adaptations of the linear LP estimator to nonlinear settings that have been shown

to be invalid in many cases of practical interest. Second, it is more parsimonious than al-

ternative estimators based on nonlinear or nonparametric structural VAR models. Third, as

illustrated in this paper, it can be adapted to a wide range of nonlinear data generating pro-

cesses used in applied work. Fourth, while economic theory may suggest specific parametric

nonlinear specifications, alternative theories often imply different nonlinear specifications.

The proposed estimator allows users to dispense with strong assumptions about the func-

tional form of the nonlinearity. This point is important because the current practice of

reporting results for alternative parametric functional forms by construction involves relying

on one or more inconsistent estimators.
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We formally defined the response functions of interest within a potential outcome frame-

work, derived the nonparametric LP estimator and showed how it can be adapted to various

nonlinear contexts, discussed how to construct data-dependent nonparametric approxima-

tions, illustrated how this estimator identifies the population response function, provided

high-level conditions for its consistency, and studied the accuracy of the estimator in small

and large samples by Monte Carlo simulation. We demonstrated that in three commonly

used nonlinear settings the proposed estimator tends to work well in reasonably large samples

and is robust to nonlinearities of unknown form. We also examined how the specification of

the nonlinear transformation affects the ability of the estimator to capture the size and sign

asymmetries frequently discussed in applied work. An empirical illustration focused on the

question of how the level of government debt changes the effectiveness of monetary policy

shocks.
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Gonçalves, S., Herrera, A.M., Kilian, L,. Pesavento, E., 2021. Impulse response analysis

for structural dynamic models with nonlinear regressors. Journal of Econometrics 225, 107-

130.
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A Appendix

A.1 CAR for Model Interacting Shock and State

Recall the model that includes an interaction between the shock of interest and a continuous

state variable given by:
xt = ε1t

yt = β21xt + β23rt + α21xtrt + γ21yt−1 + ε2t

rt = f(xt−1) + ε3t.

For the sake of notational simplicity we will denote the potential outcome yt(e) and

yt(e+ δ) with superscripts (i.e., yet and ye+δ
t , respectively).

First, note that

yet = β21e+ β23rt + α21ert + γ21yt−1 + ε2t

ye+δ
t = β21(e+ δ) + β23rt + α21(e+ δ)rt + γ21yt−1 + ε2t

where rt is known at time t since it is a function of xt−1. For h = 0 the potential outcome

is linear in e.

For h = 0, we have that

ye+δ
t − yet = β21δ + α21rtδ,

thus

CAR0(δ, r) = E[yt(ε1t + δ)− yt(ε1t)|rt = r] = (β21 + α21r)δ. (11)

For h = 1,

yet+1 = β21ε1t+1 + β23r
e
t+1 + α21ε1t+1r

e
t+1 + γ21y

e
t + ε2t+1

ye+δ
t+1 = β21ε1t+1 + β23r

e+δ
t+1 + α21ε1t+1r

e+δ
t+1 + γ21y

e+δ
t + ε2t+1

ye+δ
t+1 − yet+1 = β23(r

e+δ
t+1 − ret+1) + α21ε1t+1(r

e+δ
t+1 − ret+1) + γ21(y

e+δ
t − yet )

with

re+δ
t+1 − ret+1 = f(e+ δ)− f(e).

Note that for h = 1 the potential outcome is not linear in e. A local projection that regresses

yt+h on xt, rt and the interaction term xtrt will not be able to recover this conditional impulse
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response function. It follows that

E[yt+1(ε1t+δ)−yt+1(ε1t)|rt = r] = β23E[f(ε1t+δ)−f(ε1t)|rt = r]+γ21E[yt(ε1t+δ)−yt(ε1t)|rt = r]

given that E[ε1t+1(f(ε1t+ δ)− f(ε1t))|rt = r] = 0 by the law of iterated expectation and the

fact that ε1t is i.i.d.

Then

CAR1(δ, r) = β23E[f(ε1t + δ)− f(ε1t)|rt = r] + γ21CAR0(δ, r) (12)

where E[f(ε1t + δ)− f(ε1t)|rt = r] = E[f(ε1t + δ)− f(ε1t)] under the assumptions of our

model.

For h > 1, we have

CARh(δ, r) = γ21CARh−1(δ, r) (13)

where we use the fact that

re+δ
t+h − ret+h = f(xe+δ

t+h−1)− f(xet+h−1) = 0.

This follows because xe+δ
t+h−1 = xet+h−1 since xt = ε1t and only ε1t is subject to the δ shock.

In the special case where f is linear, f(ε1t+δ)−f(ε1t) is a linear function of δ, the potential

outcome is linear in e; thus, the CAR can be recovered from the usual local projection.
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Figure 1: Alternative IRF definitions

(a) f(x) = max(xt, 0) (b) f(x) = x3t

Notes: The solid red line and the dashed blue line correspond to the two definitions of the average

response function ARF and ARF ∗ respectively, to a shock of size δ = 2.
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Figure 2: Nonlinear regressors model, Correctly specified, f(xt) = max(xt, 0), δ = 2

Notes: The black solid line reports the average response function, ARF , the green dashed line illustrates

the plug-in estimator when the functional form of f(xt) is correctly specified, the blue line illustrates

the local linear estimator, and the red line illustrates the power series estimator.
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Figure 3: Nonlinear regressors model, Correctly specified, f(xt) = x3t , δ = 2

Notes: The black solid line reports the average response function, ARF , the green dashed line illustrates

the plug-in estimator when the functional form of f(xt) is correctly specified, the blue line illustrates

the local linear estimator, and the red line illustrates the power series estimator.
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Figure 4: Misspecified nonlinear regressors model, f(xt) = −2.29x2t + 5.66x3t

Notes: The black solid line reports the average response function, ARF , the green dashed line illustrates

the plug-in estimator when the functional form of f(xt) is correctly specified, the blue line illustrates

the local linear estimator, the yellow and purple lines illustrates the plug-in estimator in the presence of

misspecification (f(xt) = x2 and f(xt) = x3, respectively).
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Figure 5: State Dependent Model, T = 240, δ = 2

Notes: The black solid line reports the conditional average response function, CAR, the green dashed line

illustrates the state-dependent LP estimator, the blue and red lines illustrate the local linear estimator

with the rule-of-thumb bandwidth (LL1) and twice the rule-of-thumb bandwidth (LL2), respectively.
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Figure 6: Model with Shock and State Interaction, δ = 2, f(xt) = max(0, xt)

Notes: The black solid line reports the conditional average response function, CAR, the green dashed

line illustrates the nonlinear LP estimator, the blue and red lines illustrate the local linear estimator

with the rule-of-thumb bandwidth (LL1) and twice the rule-of-thumb bandwidth (LL2), respectively.
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Figure 7: Model with Shock and State Interaction, δ = 2, f(xt) = x2t

Notes: The black solid line reports the conditional average response function, CAR, the green dashed

line illustrates the nonlinear LP estimator, the blue and red lines illustrate the local linear estimator

with the rule-of-thumb bandwidth (LL1) and twice the rule-of-thumb bandwidth (LL2), respectively.
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Figure 8: Model with Shock and State Interaction, δ = 2, f(xt) = x3t

Notes: The black solid line reports the conditional average response function, CAR, the green dashed

line illustrates the nonlinear LP estimator, the blue and red lines illustrate the local linear estimator

with the rule-of-thumb bandwidth (LL1) and twice the rule-of-thumb bandwidth (LL2), respectively.
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Figure 9: Monetary Policy Effectiveness and Government Debt

Notes: The blue solid line plots to the local linear estimate and the green dashed line plots the nonlinear

LP estimates.
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