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reveal clear shifts in transmission patterns when these block factors are included, shed-
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only improves our understanding of systemic risk, but also provides a valuable tool for
macrofinancial surveillance, offering insight into where vulnerabilities lie.
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1 Introduction

The roots of the most recent global financial crisis can be traced back to the lending condi-
tions and financial environment that emerged in the early 2000s. In response to the bursting
of the dot-com bubble, the brief recession in 2001, and the aftermath of the 9/11 terrorist
attacks, central banks aggressively lowered interest rates from 6.5% in 2001 to approximately
1% by mid-2003. This prolonged period of monetary easing significantly altered lending con-
ditions, fostering an unprecedented expansion in consumer, mortgage, and corporate credit
markets. Looser lending standards, historically low borrowing costs, and increasingly relaxed
regulatory oversight encouraged rapid and extensive credit growth, particularly within the
housing sector. Although these conditions initially facilitated economic recovery, they si-
multaneously led to increased financial vulnerabilities, ultimately amplifying systemic risks.
These vulnerabilities became starkly evident with the collapse of the subprime mortgage
market, which triggered severe financial contagion and widespread economic distress.

In a lending process, credit acquisition gives purchasing power and creates debt for the
borrower, and it also assigns risk exposure to the lender. The latter can be distinguished into
liquidity risk, associated with financing long-term loans and readily withdrawable deposits,
interest rate risk, due to loans maturing at a different time than deposits, and credit risk,
related to the credit quality characteristics of the borrower. To isolate risk exposures from
the lending process, modern banking has increasingly relied on credit derivatives. Examples
of credit derivatives include credit default swaps (CDS) and total return swaps (TRS), while
broader risk transfer tools include securitization, syndicated lending, and investments in
nontraditional assets such as hedge funds. In particular, the national amount of outstanding
over-the-counter CDS alone was $13.9 trillion in December 2005, $28.8 trillion in December
2006 and more than $60 trillion in 2008 (Dalio (2022)). Credit default swaps (CDS), first
developed by JPMorgan Chase in the 1990s, are financial contracts between a buyer and a
seller of credit protection that function similarly to insurance. The protection buyer pays
periodic premiums to the seller, who agrees to compensate the buyer if a predefined credit
event (such as default or bankruptcy) occurs on a reference entity. Although they share
similarities with insurance, CDSs are traded over-the-counter and are used by a wide range
of financial institutions, including banks, hedge funds, and insurers, to hedge or speculate on
credit risk. Therefore, CDS can be used to hedge credit risk exposures specifically, without
directly transferring interest rate risk, unlike total return swaps, which expose the holder to
both credit and interest rate fluctuations (Ashraf, Altunbas, and Goddard (2007); Jarrow
(2011); Zhang, Zhou, and Zhu (2009)).
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The bankruptcy of Lehman Brothers and the near-collapse of AIG were not random
events, but rather the result of concentrated risk exposures in structured credit markets.
AIG, in particular, was a major seller of CDS on mortgage-backed securities and lacked the
capital reserves to honor those contracts when defaults surged. Lehman Brothers, while
involved in CDS markets, was more broadly exposed to losses on mortgage-linked assets and
faced acute funding pressures. The widespread issuance of loans to subprime borrowers,
whose repayments depended on rising home prices and refinancing, led to a breakdown in
repayment capacity once housing markets declined. As defaults mounted, CDS payouts were
triggered, transferring credit risk to protection sellers and amplifying systemic stress. The
resulting chain reaction of institutional distress exemplifies financial contagion, where shocks
propagate across institutions through complex interconnections and concentrated exposures.

The absence of a straightforward European policy framework on how to tackle a banking
crisis led several European sovereigns to act in favor of banks in trouble during the 2008
financial crisis and provide the funding needed for their rescue. Inevitably, this increased
sovereign risk and debt accumulation, contributing to the European sovereign debt crisis
of 2010. Gerlach, Schulz, and Wolff (2010) find that countries with a large financial sector
have a higher credit risk due to the higher probability of stepping up and rescuing banks.
In response to changes in the creditworthiness of sovereign institutions, the corporate sec-
tor becomes vulnerable and exposed to measures such as higher corporate taxes leading to
lower profitability. This created a “transfer risk” channel where the risk is transferred from
sovereigns to corporate banks. In parallel, banks in distress struggle to reduce their risk ex-
posure. As large banks hold sovereign debt of different countries, sovereign risk is exchanged
among international banks, feeding systemic risk mechanisms.

This chronicle is an example of how contagion and amplification effects can pose a threat
to the stability of the entire economy. Thus, it is crucial for idiosyncratic spillovers to
be carefully monitored to determine their ability to activate systemic risk. In particular,
estimating idiosyncratic spillover effects among economic institutions can reveal critical in-
formation about the magnitude and speed of propagation of shocks in one or a group of
institutions. We use CDS spreads as a measure of perceived credit risk to study potential
transmission channels among European banks, sovereigns, and non-financial firms. Zingales
and Hart (2010), emphasizes that CDS spreads can be seen as a bet on the strength of an
institution, and hence their price or spread depicts the probability that the debt will not be
paid back in full. Annaert et al. (2013), also highlights that increases in CDS spreads can
be viewed as warnings to regulators to check the financial health of an institution.

This paper makes two contributions to this literature. First, following the methodologi-
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cal tools of Diebold and Yilmaz (2014) we provide a measure of systemic risk by estimating
measures of connectedness that are quantitative and directional. This allows us to represent
connectedness in a heatmap matrix. Secondly, we contribute to the previous measures by
adding block factors to the estimation, where the blocks are naturally suggested by our data:
four blocks for the non-financial sectors (Automobiles, Consumers, Energy and Telecommu-
nications), one block for financial firms and one block for sovereign countries. By extending
the connectedness measure of Diebold and Yilmaz (2014) to incorporate block-specific com-
mon factors in addition to the global factor, we isolate pure idiosyncratic spillovers that
are not driven by shared sectoral or regional dynamics. This refinement demonstrates that
estimated spillover effects can differ substantially depending on whether only a global factor
or both global and block-level factors are considered. Furthermore, by explicitly modeling
block factors, we can distinguish between spillovers caused by shocks to an entire block and
those arising from purely idiosyncratic sources, providing a more nuanced view of systemic
risk.

The paper is organized as follows. Section 2 provides the literature review. The methodol-
ogy and modeling approach are described in Section 3. In Section 4, we discuss the empirical
application, while Section 5 offers concluding remarks. A detailed data description, along
with tables and robustness checks, is provided in the Appendix.

2 Literature Review

The 2008 financial crisis and the subsequent European sovereign debt crisis ignited widespread
interest in the transmission of risk across financial institutions and sovereigns. A central
theme in this literature is the mutual reinforcement of bank and sovereign vulnerabilities.
For example, Acharya, Drechsler, and Schnabl (2012) develop a structural framework link-
ing sovereign credit risk to bank fragility, showing how government bond holdings create
channels for risk to flow between sovereigns and domestic banks. Building on this, Acharya,
Drechsler, and Schnabl (2014) employ a Vector Autoregression (VAR) approach to quan-
tify the so-called “doom loop” in which declining sovereign creditworthiness weakens bank
balance sheets, leading to tighter credit conditions amplifying economic downturns. Alter
and Beyer (2014) extend this analysis with a network-based perspective, using CDS data
to capture market-perceived risk spillovers between banks and sovereigns, especially during
crises. Finally, De Bruyckere et al. (2013) apply panel data regressions to analyze the im-
pact of sovereign creditworthiness on the probabilities of bank default. Their results indicate
that sovereign downgrades increase the risk of bank credit, both through direct exposure to
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debt and broader macroeconomic deterioration. This effect is particularly pronounced in
financially fragile economies, where sovereign distress more severely weakens bank stability.

A related line of work explores how sovereign risk transmits to corporate entities, con-
straining lending, and raising borrowing costs. Bedendo and Colla (2015) analyze firm-level
CDS data to demonstrate how sovereign risk affects corporate credit spreads, particularly
for firms tied to government spending. Henry et al. (2013) incorporate macroeconomic shock
scenarios into a stress testing framework to evaluate how sovereign distress is transmitted
to corporate sectors. Broadening the scope, Gross and Siklos (2020) apply a TVP-VAR
framework to examine the interconnectedness between banks, corporations, and sovereigns,
underscoring how interconnectedness intensifies during crises.

Beyond sector-specific or sovereign-focused studies, a rich literature investigates general
measures of financial connectedness. Barigozzi and Hallin (2017) use a high-dimensional
factor model to assess interconnectedness in financial markets. Using principal component
analysis (PCA), they extract the primary risk factors driving financial contagion. Their
findings reveal that systemic risk clusters around key financial institutions and sovereigns,
reinforcing the importance of monitoring these entities in crisis periods. Demirer et al.
(2018) take a network analysis approach, employing dynamic connectedness measures based
on generalized variance decompositions. Their study shows that financial interconnectedness
fluctuates over time, intensifying during crises, and highlights the role of non-financial firms
in facilitating risk transmission. In particular, Diebold and Yilmaz (2014) and Diebold
and Yilmaz (2009) introduce a widely used connectedness index derived from VAR forecast
error variance decompositions estimated from VARs. Their findings reveal that financial
links strengthen sharply in times of crisis, emphasizing the need for real-time systemic risk
monitoring.

Our contribution is built directly on this foundation. We extend the connectedness
framework of Diebold and Yilmaz (2014) by explicitly modeling block-specific common fac-
tors representing sectoral or regional economic groups, alongside the global factor. This
innovation allows us to disentangle truly idiosyncratic spillovers from those driven by shared
sector or regional dynamics. Our application of block factors within the Diebold-Yilmaz con-
nectedness framework is novel in the literature. Our methodology is different from Moench,
Ng, and Potter (2013)’s which highlights the economic importance of block factors in a hier-
archical dynamic factor model. Using our approach, we estimate and visualize connectedness
among banks, sovereigns, and corporates, comparing results with and without block factors
that provide insight for macrofinancial surveillance and systemic risk monitoring.
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3 Measures of Connectedness

In recent literature, h-step forecast error variance decompositions (see Pesaran and Shin
(1998)) have been used to provide estimates of spillovers. Most articles calculating variance
decompositions debate directly or indirectly between choosing generalized (see Diebold and
Yilmaz (2014), Demirer et al. (2018)) or structural variance decompositions (Barigozzi and
Hallin (2017), Yang, Tong, and Yu (2021), Diebold and Yilmaz (2009)). In this paper, we
are using generalized variance decompositions (GVD), due to the high dimensionality of our
model and because we are interested in a general measure of connectedness not related to one
specific structural shock.1 Following Diebold and Yilmaz (2014), we use generalized variance
decomposition to estimate how much of the institution i’s h-step forecast error variance is
attributable to shocks originating from institution j. Because we are interested in a large
number of institutions, we are assuming sparsity in the VAR coefficient matrix and use
elastic net shrinkage to tackle high-dimensionality. Unlike traditional directional network
measures, this approach allows us to capture not only the direction of spillovers but also
their magnitude, providing a richer metric of connectedness across institutions. Because we
are specifically interested in spillovers driven by idiosyncratic shocks, it is common practice
in this literature to control for global common factors, typically by including one or two
global factors in the analysis. Our contribution to this literature is to control not only
for global factors, but also for blocks (or groups) specific factors.2 Block-specific factors are
predefined by the user and are often dictated by the data. In our case, we will have six blocks
corresponding to 4 sectors within the non-financial firms (Auto and Industrials, Consumers,
Energy, and Telecommunications) in addition to one factor specific to financial firms and
one factor for sovereign countries (see Table 2 in Appendix A to see which firms belong to
each group).

3.1 Connectedness in a Static form of a Dynamic Factor Model

To review how our measure of connectedness is computed, let us first describe how to estimate
it when only global factors are assumed. The next section will generalize the measure to
allow for block factors. Consider a static dynamic factor model (see Stock and Watson

1While outside the scope of this paper, it could be possible to also include a factor normalization identi-
fication similar to Stock and Watson(2016) to study connectedness due to a specific normalized factor.

2In the multi layers network language the blocks would correspond to layers.
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(2016)):

Xt = ΛFt + εt (1)

Ft = Φ(L)Ft−1 +Gηt (2)

εt = Θ (L) εt−1 + vt (3)

In this model, where our dependent variable Xt is N × 1, there are r global common factors,
so Ft is r× 1, Λ is N × r, Φ(L) is r× r, ηt is an r× 1 vector of factors’ shocks, εt is a N × 1
vector of idiosyncratic shocks which are allowed to be serially correlated, and Θ(L) is N ×N

and vt are the innovations to the idiosyncratic shocks. Following the literature, we assume
that the factor shocks and the idiosyncratic shocks are orthogonal, therefore uncorrelated at
all leads and lags, which implies that vt and ηt are uncorrelated. The MA representation of
the model is given by

Xt = ΛD (L) ηt + C (L) vt (4)

where 3

D (L) = (1 − Φ(L)L)−1G

C (L) = (1 − Θ (L)L)−1

and, by assumption,
E (η′

tvt−k) = 0 for all k ≥ 0.

The total variance of each Xit can then be decomposed into two parts:

VAR (Xit) =
H∑

h=0
(e′

iΛDhΣD′
hΛ′ei) +

H∑
h=0

(e′
iChΩC ′

hei) (5)

where ei is a N × 1 selection vector with 1 on the ith element and zeros everywhere else. We
have two types of shocks in this model: The first component is due to shocks to the common
factor (elements of D(L) and, Σ the variance covariance of ηt) while the second is due to
shocks to the idiosyncratic components (elements of C(L) and the variance covariance matrix
of vt denoted as Ω). Following Diebold and Yilmaz (2014), we now construct measures of
generalized variance decomposition (GVD) in response to the two sets of shocks. Define
Σ = E (η′

tηt) and assume normality as in Pesaran and Shin (1998) to define the GIRF as the
3While we leave the matrix G in model (4) unrestricted for generality, we will later assume that the

number of shocks is equal to the number of factors and impose the restriction G = I. See ? for a discussion
on the role of G .
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difference of two expectations. Suppose, for example, that we are interested in a shock to
the first global factor; then

GIRFX,1 = E [Xt+h|η1t = δ1,Ωt−1] − E [Xt+h|Ωt−1] ,

which implies

GIRFX,1 = ΛE
[ ∞∑

i=0
Diηt+h−i|η1t = δ1,Ωt−1

]
= ΛDhE [ηt|η1t = δ1,Ωt−1]

= ΛDhE

[
η1t

η2t
|η1t = δ1,Ωt−1

]

= ΛDh

[
δ1

E(η2t|η1t = δ1,Ωt−1

]

= ΛDh

[
δ1

Σ21σ
−1
11 δ1

]

= ΛDh

[
σ11
Σ21

]
σ−1

11 δ1

= ΛDhΣe1σ
−1
11 δ1

In general, the GIRF of the vector X to the j factor is

GIRFX,j = ΛDhΣejσ
−1
jj δj,

and the scaled (the GIRF for a shock of one standard deviation size) is

GIRFX,j = ΛDhΣejσ
−1/2
jj , (6)

where ej is a r × 1 selection vector with one on the jth element and zeros everywhere else.
Equation (6) measures the effect of a shock of one standard deviation on the jth global
common factor at time t+ h on all N variables. The response of variable i will be given by

GIRFXi,j = e′
iΛDhΣejσ

−1/2
jj

where now ei is a N × 1 selection vector with 1 on the ith element and zero everywhere else.
The factor j’s contribution to the firm i’s H-step ahead generalized forecast error variance,
where H = 0, 1, . . ., is then

ϕg
ij(H) =

σ−1
jj

∑H
h=0 (e′

iΛDhΣej)2∑H
h=0 (e′

iΛDhΣD′
hΛ′ei) + ∑H

h=0 (e′
iChΩC ′

hei)
. (7)

7



Similarly, the GIRF from a shock in idiosyncratic component is

GIRFXi,j = e′
iChΩejω

−1/2
jj (8)

where Ω is the variance covariance of vt. The firm’s j contribution to the firm i’s H-step
ahead generalized forecast error variance is

θg
ij(H) =

ω−1
jj

∑H
h=0 (e′

iChΩej)2∑H
h=0 (e′

iΛDhΣD′
hΛ′ei) + ∑H

h=0 (e′
iChΩC ′

hei)
. (9)

Because we work in the generalized VAR framework, variance shares do not necessarily
add up to 1; that is, in general, ∑N

j=1 ξ
g
ij(H) ̸= 1, ξ ∈ {ϕ, θ}. Hence we normalize each

entry of the generalized variance decomposition matrix by the row sum to obtain pairwise
directional connectedness from factor j to firm i (see also Diebold and Yilmaz (2014)) :

ξg
ij(H) =

ξg
ij(H)∑r

j=1 ξ
g
ij(H) . (10)

3.2 Connectedness in a Static form of a Dynamic Factor Model
with Blocks

Now consider a dynamic factor model in which, in addition to the r global factors, there
are s block factors specific to each sector (e.g. financial, sovereigns, and non-financial), one
factor for each block. Following the notation from the previous section, the model becomes:

Xt = ΛFt + ΓRt + εt (11)

Ft = Φ (L)Ft−1 +Gηt (12)

Rt = Ψ (L)Rt−1 +Hwt (13)

εt = Θ (L) εt−1 + vt (14)

where Ft is an r × 1 vector of global factors, Rt is a s × 1 vector of block or group factors.
Λ is the N × r loading matrix for the global common factors Ft. Γ is the N × s loading
matrix for the block common factors Rt, so only the block factor Rjt, where j = {1, 2, . . . , s},
enters the equation for the variables in the block j. All factors and idiosyncratic shocks are
assumed to be dynamic, εit is assumed to be cross-sectionally uncorrelated, and ηt, wt, and
vt are assumed to be orthogonal to each other. We will define W = E(wtw

′
t) and assume

that it is diagonal, so the block factors are assumed to be uncorrelated.
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The moving average representation of the model with block factors is:

Xt =Λ (I − Φ (L)L)−1 Gηt + Γ (I − Ψ (L)L)−1 Hwt + (1 − Θ (L)L)−1 vt

=ΛD (L) ηt +B (L)wt + C (L) vt.

where D(L) = (I − Φ (L)L)−1 G, B(L) = Γ (I − Ψ (L)L)−1 H, and C(L) is as defined be-
fore. We assume that H and G are equal to I so that the number of shocks is equal to the
number of factors.

We can now define the response of X at time t+ h to a shock to the first block factor as

GIRFX,1 = E [Xt+h|w1t = δ1,Ωt−1]

= ΓE
[ ∞∑

i=0
Biwt+h−i|w1t = δ1,Ωt−1

]
= ΓBhE [wt|w1t = δ1,Ωt−1]

= ΓBhE

[
w1t

w2t
|w1t = δ1,Ωt−1

]

= ΓBh

[
δ1

W21σ
−1
11 δ1

]
= ΓBhWe1w

−1
11 δ1.

Notice that because Bs×s is a full matrix, a shock to the block factor in group j will still
affect the variables in group j′. This is true even if we allow the shocks to the group factors
to be contemporaneously uncorrelated. The contribution of the group factor j’ to the firm
i”s H-step ahead generalized forecast error variance is

ψg
ij(H) =

w−1
jj

∑H
h=0 (e′

iΓBhWej)2∑H
h=0 (e′

iΛDhΣD′
hΛ′ei) + ∑H

h=0 (e′
iΓBhWB′

hΓ′ei) + ∑H
h=0 (e′

iChΩC ′
hei)

, (15)

For normalization purposes we can compute the pairwise directional connectedness from
block factor j to firm i, as follows,

ψg
ij(H) =

ψg
ij(H)∑r

j=1 ψ
g
ij(H) . (16)

4 Empirical Results

To study risk transmission channels among European institutions, we use data from the CDS
spreads from DataStream. The data consists of 152 institutions categorized into 3 sectors,
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namely, the Non-Financial sector, the Financial sector, and Sovereigns. The Non-Financial
sector can be further categorized into the following four subsectors: Automobile, Consumer,
Energy, and Telecommunication Industries. Data are daily spreads from October 23, 2006,
to May 19, 2022, and are standardized by logarithmic units.4

Our goal is to analyze the contribution of including block factors in our measure of
connectedness and systemic risk contagion. To achieve this, we estimate a Dynamic Factor
Model, as outlined in the previous section, using either one global common factor or a
combination of one global common factor and six block-specific factors (one for each sub-
sector). In both cases, we examine the spillovers among industries and from block and
global factors to industries. The decision to retain a single global factor is supported by
its explanatory power: It accounts for 46.57% of the total variance. In comparison, the
second global factor contributes only 3.7%, providing minimal additional information. Due
to the high dimensionality inherent in our setting, we estimate the VAR coefficients and
residuals for the idiosyncratic component (Equations (1-3)) using elastic net regularization
with 10-fold cross-validation. When block factors are introduced, we include one per group,
allowing us to capture region- or sector-specific comovements. Specifically in our dataset, we
have 6 natural blocks5; 4 blocks within non-financial firms (Automobiles, Consumers, Energy
and Telecommunications), plus one block for all financial firms and one block for sovereign
countries. Both global and block factors are modeled as AR(1) processes, as suggested by
the BIC criterion (see Table 1).

Comparing connectedness estimates with and without block factors helps disentangle the
sources of spillovers, revealing the extent to which they are driven by global shocks, group-
specific (block-level) dynamics, or truly idiosyncratic firm-level factors. This distinction is
crucial for identifying the source of financial contagion and for designing policies that target
systemic versus localized vulnerabilities.

4.1 Variance decomposition of a shock in the global factor

Figure 7 shows the share of each institution’s 10-day forecast error variance explained by
a shock to the global factor, both without (panel a) and with (panel b) the inclusion of
block factors. The colors in the heatmaps represent the relative strength of the connections:
darker blue shades indicate stronger links between the global factor and the institutions,

4The transformed data is confirmed to be stationary via standard Augmented Dickey-Fuller unit root
test.

5Appendix B includes connectedness estimates for a model with one global factor and only three block
factors corresponding to non-financial, financial, and sovereign.
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while lighter shades reflect relatively weaker connections.

A careful comparison of the two panels reveals that the overall structure and ranking
of variance contributions are largely unchanged. This is consistent with the model design:
since global and block-level factors are assumed to be orthogonal, introducing block factors
should not affect the estimated impact of global shocks. Instead, the block factors mostly
influence the idiosyncratic variance decomposition examined in later figures.

The figure highlights several important patterns. First, global shocks account for a sub-
stantial share of variability among non-financial institutions (indices 0–108). Some firms are
especially sensitive, including Volvo (1), Akzo Nobel (2), BAE Systems (7), Saint-Gobain
(13), Daimler (16), Vinci (37), Kering (56), E.ON (74), Deutsche Telekom (91), and Or-
ange (95). These are large industrial, utility, and telecommunication companies, and their
sensitivity to global shocks likely reflects exposure to global demand, supply chains, and
capital markets. Among financial institutions (indices 109–141), the global factor explains a
moderate amount of variability, with somewhat stronger connections observed for insurance
companies (indices 109–117). In contrast, several banks, including Dexia (118) and Bank of
Ireland (124), exhibit relatively low sensitivity to global shocks.

Sovereign institutions (indices 142–151) tend to show the lowest sensitivity to global
factor shocks. This can be attributed to the direct impact of economic problems on the
financial and non-financial sectors. However, some sovereigns such as Belgium (143), Italy
(147), Portugal (149), and to a lesser extent Spain (150), and the UK (151), exhibit relatively
stronger exposure to global shocks. This may be due to their higher debt burdens and
prolonged recovery trajectories following the 2008 financial crisis, which made them more
susceptible to changes in global financial conditions.

Together, Figure 7 underscores the heterogeneous impact of global shocks across different
types and jurisdictions of institutions, highlighting the particularly strong transmission to
large non-financial corporations and certain sovereigns with elevated post-crisis vulnerabili-
ties.

4.2 Variance decomposition of a shock in the idiosyncratic com-
ponents

Once the effect of a shock to the global and block factors is taken into account, any con-
nectedness in response to idiosyncratic shocks can be interpreted as a measure of the pure
spillover effects among institutions. Figure 8, panel (a), presents the heatmap of the vari-
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ance decomposition matrix of the idiosyncratic components without the inclusion of block
factors, while panel (b) shows the respective matrix when block factors have been taken into
account. Panels (c) and (d) are a zoom-in version of panels (a) and (b), respectively, to
emphasize only the lower right part of the matrix focusing on the financial and the sovereign
institutions. Each square in the heatmap represents the percentage contribution of a shock
to the institution in the column to the 10-day forecast error variance of the institution in the
corresponding row. In other words, the heatmap captures the directional connectedness from
column to row. Similarly to the previous heatmap figures, darker heatmap colors represent
stronger relative connections. This is to say that the same color on different graphs may
represent different absolute values but the same ranking.

Some key insights appear in Figure 8. The heatmap is asymmetric, confirming that
spillovers are directional: some institutions are net transmitters, others are net receivers. In
addition, the matrices are not dense, suggesting that most institutions are only connected to
a few others, supporting the idea of sparse idiosyncratic spillovers. In particular, while non-
financial firms were highly sensitive to global shocks in Figure 7, they exhibit relatively low
levels of idiosyncratic connectedness both between themselves and with banks. This supports
the idea that their linkages are primarily driven by shared economic exposures (captured by
global/block factors), not firm-to-firm contagion. In general, Figure 8 underscores that even
after eliminating common shocks, idiosyncratic spillovers remain concentrated within certain
blocks, especially among periphery financial institutions. This highlights their vulnerability
not only to systemic risk, but also to local dynamics that amplify distress through tight
informal channels.

Looking into more details in panels (a) and (b), we observe that, overall, the percentage
of the 10-day forecast error variance is stronger for institutions around the matrix diagonal,
which means that institutions that belong to the same sub-sector are more interconnected.
This pattern is particularly evident among financial institutions (indices 109–142, especially
109–117) and sovereign entities (indices 142-151), where spillovers within the group are more
pronounced. In panel (a), the vertical belt formed by the institutions by the indices 109-142
show that, in the one-block model, shocks in the financial sector are correlated with the
non-financial sector. This pattern is no longer visible in panel (b) after the block factors are
extracted, suggesting that this correlation was due to group factors rather than individual
correlations.

Additionally, in panel (a), insurance companies (109-117) seem to have strong connec-
tions among each other relatively to any other sub-sector institutions. Companies 109-117,
composed mainly of large European insurance and reinsurance companies, appear strongly
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interconnected in the model without block factors (Figure 8a). This is likely due to shared
exposures to regulatory, interest rate, and credit market conditions specific to the insur-
ance sector. In the absence of block-level controls, these shared dynamics are misattributed
to direct idiosyncratic spillovers. Once block factors are introduced, these sector linkages
disappear, highlighting more the interconnectedness between insurance firms and the rest
of the financial firms and revealing that much of the observed connectedness within this
group was driven by sector-wide forces rather than firm-specific contagion. Similarly, banks
(119–141) appear tightly interconnected in the model without block factors (panels (a)-(c)),
with widespread estimated spillovers between institutions. This reflects the dense linkages
within the European banking sector. However, once block-level effects are accounted for
(panels (b)-(d)), the estimated idiosyncratic spillovers are markedly reduced. This suggests
that much of the observed connectedness among banks arises from common sectoral and
regional dynamics, rather than from direct firm-to-firm contagion. Ignoring block factors
risks overestimating systemic risk by conflating common shocks with idiosyncratic trans-
mission. Finally, panels (b) and (d) emphasize the interconnectedness between sovereigns,
highlighting the importance of the financial health of each individual sovereign for the rest
of sovereigns.

Figure 3 zooms into the financial sector for both models, panel (a) and panel (b), respec-
tively. In addition to the relative strength represented by the colors’ intensity, the heatmap
now includes estimated variance decomposition. For example, the square in row 110 and
column 114 shows a value of 7.5%, which means that a shock to institution 114 explains
7.5% of the 10-day forecast error variance of institution 110.

Figure 3 illustrates how the inclusion of block factors reshapes our understanding of
spillovers between financial institutions. Notably, the heatmap becomes more asymmetric
once block factors are included, reflecting the fact that shared within-group comovements,
often symmetric by nature, are absorbed by the block structure. What remains are more
directional and idiosyncratic spillovers between institutions. The magnitude of estimated
forecast error variance contributions also shifts. For example, the directional connectivity
from Unicredit (128) to Intesa Sanpaolo (125), two major Italian banks, increases from
7.8% in the no-block model to 9.2% in the model with blocks. This suggests that, once
common financial dynamics are accounted for, Unicredit emerges as a stronger idiosyncratic
transmitter of risk to Intesa. In contrast, the connection from Barclays (137) to Royal Bank
of Scotland (135), both UK banks, remains largely unchanged (8.5% vs 8.7%), indicating
a robust bilateral linkage not driven primarily by broader block factors. This comparison
underscores the value of controlling for block-level comovement to more accurately identify

13



institution-specific spillovers.

Focusing on sovereigns, Figure 4(a) shows that, absent block controls, Austria (142),
France (144), and Germany (145) exhibit extremely high levels of bilateral connectedness.
For example, a shock to Austria explains more than 26% of France’s 10-day forecast error
variance, and similar magnitudes are observed in both directions. Similarly, Austria ac-
counts for 21.5% of Germany(145)’s 10-day forecast error variance, while Germany accounts
for 19.9% of Austria’s 10-day forecast error variance. These elevated connections likely re-
flect shared exposure to common euro area dynamics, such as monetary policy, capital flows,
and safe-asset demand. However, once block factors are introduced (Figure 4(b)), the pic-
ture changes dramatically: the strongest connections shift to Italy (147), Portugal (149),
and Spain (150), and the overall magnitudes decrease (the strongest connection goes from
26.5% to 11.7%). This suggests that the core sovereigns, Austria, Germany, and France, pri-
marily drive systemic block-level shocks, while more idiosyncratic residual spillovers remain
concentrated among peripheral countries. Ignoring block structure would thus overstate the
bilateral risk transmission between the core sovereigns and understate the localized vulner-
ability of the periphery.

Overall, our results clearly show that the interpretation of our measure of connectedness
changes when block factors are taken into account. Both the model with block factors and
the model without them can be used to measure connectedness, but they capture differ-
ent dimensions of it: the version with block factors isolates more idiosyncratic firm-to-firm
spillovers, while the version without block factors includes shared dynamics within economic
or institutional blocks. Each provides distinct but complementary insights into the structure
and sources of connectedness in the system.

4.3 Variance decomposition of a shock in the block factors

Figure 10 illustrates the 10-day forecast error variance of a shock in each of the block factors
and how this correlates with each institution. Note that this is an inverted plot; now the
shocks are in rows and are transmitted across the columns. Thus, we can infer that a shock
in each block is mostly transmitted to industries within that same block to varying degrees.
Figure 10 reveals that shocks to financial and sovereign block factors contribute more sub-
stantially to the 10-day forecast error variance of institutions than shocks to industry block
factors. This pattern aligns with the structural role of these sectors within the European
financial system. Sovereign institutions, particularly in Austria, France, and Germany, an-
chor market expectations for fiscal stability and serve as safe assets during periods of stress.
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The financial sector similarly functions as a transmission hub, amplifying and distributing
shocks due to deep interconnections between banks and insurance companies. In contrast,
shocks to industry blocks, such as energy or telecommunications, tend to be more contained,
reflecting more idiosyncratic or sector-specific dynamics. These results reinforce the impor-
tance of distinguishing between systemic block-level shocks and localized spillovers, and they
highlight the centrality of the sovereign-financial nexus in driving connectedness across the
euro area.

Figure 11 illustrates the relative importance of global and block-level shocks by showing
the variance decomposition of a unit shock in each. The figure reveals that global shocks
exert stronger influence on non-financial firms, particularly those in the automotive and
industrial sectors (indices 0 to 39). As expected, the global factor shocks explain a higher
percentage of the 10-day ahead forecast error variance than the block factor shocks. In
particular, the directional connectivity from the sovereign block factor to the core sovereign
institutions, Austria, France, and Germany, is relatively weak. This reflects the fact that
these countries are key drivers of the sovereign block itself. Since their dynamics are already
embedded in the construction of the block factor, they exhibit minimal additional response
to a shock in that factor. In contrast, peripheral sovereigns respond slightly more strongly,
suggesting that they absorb the systemic effects transmitted by core institutions.

5 Conclusions

This paper proposes a novel decomposition of financial connectedness across European
sovereigns, financial institutions, and non-financial firms by separating global shocks, block-
level (sector or region-specific) shocks, and purely idiosyncratic spillovers. Using CDS spreads
as a forward-looking measure of credit risk, we show that traditional estimates of spillovers
when block-level dynamics are not accounted for tend to overstate the extent of bilateral
contagion by conflating it with common sectoral or regional trends.

Our results reveal several important patterns. First, global shocks play a dominant role in
shaping risk for non-financial institutions, especially in sectors like automotive and industri-
als. In contrast, block-level shocks are more relevant for financial and sovereign institutions,
where sectoral co-movement is particularly strong. Second, including block factors in the
model leads to a more asymmetric pattern of residual connectedness, underscoring that
firm-specific risk transmission is directional and not necessarily reciprocal. Third, sovereign
institutions in core countries such as Austria, France, and Germany appear not only as highly
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interconnected but as drivers of systemic block-level sovereign shocks, rather than recipients
of contagion.

Our findings underscore the importance of distinguishing between systemic, group-specific,
and institution-specific spillovers in assessing financial stability. The model without block
factors captures overall interconnectedness, including common exposures, while the model
with block factors isolates true firm-to-firm idiosyncratic spillovers. Both views are comple-
mentary and provide valuable insights: the former is useful for monitoring broad systemic
risk, while the latter helps identify targeted channels of contagion.

This layered perspective has practical implications for macro-financial surveillance and
crisis management. Stress testing exercises, resolution planning, and regulatory interven-
tions may benefit from incorporating global and block-level dynamics to better anticipate
how shocks propagate and which institutions are likely to amplify them. As interconnected-
ness continues to evolve, adapting surveillance frameworks to capture these nuanced spillover
mechanisms will be essential to maintaining financial stability in an increasingly complex
world.

6 Declaration of generative AI and AI-assisted tech-
nologies in the writing process

.

During the preparation of this work, the authors used ChatGPT and Writefull in the
writing process to improve the readability and language of the manuscript. After using this
tool/service, the authors reviewed and edited the content as needed and take full responsi-
bility for the content of the published article.
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Lag AIC BIC FPE HQIC
0 6.507 6.516 669.7 6.510
1 6.394 6.459* 598.0 6.417
2 6.365 6.487 581.3 6.408*
3 6.355 6.533 575.6 6.418
4 6.342 6.575 567.7 6.424
5 6.344 6.633 569.1 6.446
6 6.332* 6.677 562.2* 6.454

Table 1: Information criteria for different lag lengths. Asterisks (*) indicate the minimum
value for each criterion.
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Figure 1: Variance decomposition of a shock in the global factor with and without block
factors.

(a) Variance Decomposition (no block factors)

(b) Variance Decomposition (block factors)

Note: From index 0 to 108 are European industry, index 109 to 141 are Financial institutions and, 142 to
151 are Sovereigns. See Appendix A for institution index and name correspondence.
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Figure 2: Variance decomposition of a shock in the idiosyncratic components with and
without block factors

(a) Connectedness (no block factors) (b) Connectedness (block factors)

(c) Financials and sovereigns (no block factors) (d) Financials and sovereigns (block factors)
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Figure 3: Variance decomposition of a shock in the idiosyncratic components for the financial
sector. (values are in percentages)

(a) Financials (no block factors)

(b) Financials only (block factors)
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Figure 4: Variance decomposition of a shock in the idiosyncratic components (Sovereigns
only)

(a) Sovereigns only (no block factors) (b) Sovereigns only (block factors)
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Figure 5: Variance decomposition of a shock in each block factor

Note: This figure depicts variance component due to a shock in the six block factors.
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Figure 6: Variance decomposition of a shock to global and block factors

Note: This figure depicts variance component due to a shock to the six block factors and the global factor.
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7 Appendix A

Table 2: List of CDS entities in the panel dataset

Index Entity Name Sector Sub-Sector Country Name Code
0 Adecco Non-financial Autos & Industrials Switzerland ADE
1 Volvo Non-financial Autos & Industrials Sweden VOL
2 Akzo Nobel Non-financial Autos & Industrials Netherlands AKN
3 Alstom Non-financial Autos & Industrials France ALS
4 Anglo American Non-financial Autos & Industrials UK ANA
5 Astrazeneca Non-financial Autos & Industrials UK ASZ
6 Atlantia Non-financial Autos & Industrials Italy ATL
7 Bae Systems Non-financial Autos & Industrials UK BAE
8 BASF Non-financial Autos & Industrials Germany BAS
9 Bayer Non-financial Autos & Industrials Germany BAY
10 BMW Non-financial Autos & Industrials Germany BMW
11 Bouygues Non-financial Autos & Industrials France BOU
12 Clariant Non-financial Autos & Industrials Switzerland CLA
13 Saint-Gobain Non-financial Autos & Industrials France SAG
14 Michelin Non-financial Autos & Industrials Switzerland MIC
15 Continental Non-financial Autos & Industrials Germany CON
16 Daimler Non-financial Autos & Industrials Germany DAI
17 Deutsche Post Non-financial Autos & Industrials Germany DPO
18 Evonik Non-financial Autos & Industrials Germany EVO
19 Finmeccanica Non-financial Autos & Industrials Italy FME
20 GKN Holding Non-financial Autos & Industrials UK GKN
21 Glencore Non-financial Autos & Industrials Switzerland GLC
22 Koninklijke DSM Non-financial Autos & Industrials Netherlands DSM
23 Air Liquide Non-financial Autos & Industrials France AIR
24 Lanxess Non-financial Autos & Industrials Germany LAX
25 Linde Non-financial Autos & Industrials Germany LIN
26 Peugeot Non-financial Autos & Industrials France PEU
27 Renault Non-financial Autos & Industrials France REN
28 Rentokil Initial Non-financial Autos & Industrials UK REI
29 Rolls-Royce Non-financial Autos & Industrials UK ROR
30 Sanofi-Aventis Non-financial Autos & Industrials France SAA
31 Siemens Non-financial Autos & Industrials Germany SIE
32 Stora Enso Oyj Non-financial Autos & Industrials Finland SEO
33 Solvay Non-financial Autos & Industrials Belgium SOL
34 ThyssenKrupp Non-financial Autos & Industrials Germany THK
35 UPM-Kymmene Oyj Non-financial Autos & Industrials Finland UPM
36 Valeo Non-financial Autos & Industrials France VAL
37 Vinci Non-financial Autos & Industrials France VIN
38 Volkswagen Non-financial Autos & Industrials Germany VOL
39 Wendel Non-financial Autos & Industrials France WEN
40 Accor Non-financial Consumers France ACC
41 Electrolux Non-financial Consumers Sweden ELE
42 Auchan Non-financial Consumers France AUC
43 Alliance Boots Non-financial Consumers UK ALL
44 Carrefour Non-financial Consumers France CAR
45 Casino Guichard Non-financial Consumers France CAG
46 Compass Non-financial Consumers UK COM
47 Danone Non-financial Consumers France DAN
48 Lufthansa Non-financial Consumers Germany LUF
49 Diageo Non-financial Consumers UK DIA
50 Experian Finance Non-financial Consumers UK EXF
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(Table 2 continued)

Index Entity Name Sector Sub-Sector Country Name Code
51 Henkel Non-financial Consumers Germany HEN
52 Ladbrokes Non-financial Consumers UK LAD
53 Imperial Brands Non-financial Consumers UK IMB
54 ISS Global Non-financial Consumers Denmark ISS
55 J Sainsbury Non-financial Consumers UK JSA
56 Kering Non-financial Consumers France KER
57 Kingfisher Non-financial Consumers UK KIN
58 Koninklijke Ahold Delhaize Non-financial Consumers Netherlands AHO
59 Koninklijke Philips Non-financial Consumers Netherlands PHI
60 LVMH Non-financial Consumers France LVM
61 Marks & Spencer Non-financial Consumers UK M&S
62 Metro Non-financial Consumers Germany MET
63 Nestlé Non-financial Consumers Switzerland NES
64 Next Non-financial Consumers UK NEX
65 PernodRicard Non-financial Consumers France PER
66 Safeway Non-financial Consumers UK SAF
67 Svenska Cellulosa Non-financial Consumers Sweden SCE
68 Swedish Match Non-financial Consumers Sweden SWM
69 Tate & Lyle Non-financial Consumers UK T&L
70 Tesco Non-financial Consumers UK TES
71 Unilever Non-financial Consumers UK UNI
72 BP Non-financial Energy UK BP
73 Centrica Non-financial Energy UK CEN
74 EON Non-financial Energy Germany EON
75 Edison Non-financial Energy Italy EDI
76 Energias de Portugal Non-financial Energy Portugal EDP
77 Electricité de France Non-financial Energy France EDF
78 ENBW Non-financial Energy Germany ENB
79 ENEL Non-financial Energy Italy ENE
80 ENGIE Non-financial Energy France ENG
81 Fortum OYJ Non-financial Energy Finland FOY
82 Gas Natural SDG Non-financial Energy Spain SDG
83 Iberdrola Non-financial Energy Spain IBE
84 National Grid Non-financial Energy UK NGR
85 Royal Dutch Shell Non-financial Energy Netherlands RDS
86 RWE Non-financial Energy Germany RWE
87 Statoil Non-financial Energy Norway STA
88 Total Non-financial Energy France TOT
89 United Utilities Non-financial Energy UK UNU
90 British Telecom Non-financial TMT UK BTE
91 Deutsche Telekom Non-financial TMT Germany DTE
92 Hellenic Telecom Non-financial TMT Greece HTE
93 ITV Non-financial TMT UK ITV
94 Nokia Non-financial TMT Finland NOK
95 Orange Non-financial TMT France ORA
96 Pearson Non-financial TMT UK PEA
97 Publicis Non-financial TMT France PUB
98 Relx Non-financial TMT UK REL
99 St Microelectronics Non-financial TMT Switzerland STM
100 Ericsson Non-financial TMT Sweden ERI
101 Telefonica Non-financial TMT Spain TEF
102 Telekom Austria Non-financial TMT Austria TEA
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(Table 2 continued)

Index Entity Name Sector Sub-Sector Country Name Code
103 Telenor Non-financial TMT Norway TEL
104 Telia Non-financial TMT Sweden TEI
105 Vivendi Non-financial TMT France VIV
106 Vodafone Non-financial TMT UK VOD
107 Wolters Non-financial TMT Netherlands WOL
108 WPP Non-financial TMT UK WPP
109 Aegon Financial Netherlands AEG
110 Allianz Financial Germany ALL
111 Generali Financial Germany ALL
112 Aviva Financial Italy GEN
113 AXA Financial UK AVI
114 Hannover Rueck Financial France AXA
115 Munich RE Financial Germany HRE
116 Swiss RE Financial Germany MRE
117 Zurich Insurance Financial Switzerland SRE
118 Dexia Financial Switzerland ZIN
119 BNP Paribas Financial Belgium DEX
120 Crédit Agricole Financial France BNP
121 Société Générale Financial France CAG
122 Deutsche Bank Financial France SOG
123 Commerzbank Financial Germany DBA
124 Bank of Ireland Financial Germany COB
125 Intesa Sanpaolo Financial Ireland BOI
126 Banca Monte Di Paschi Financial Italy BMP
127 Banca Popolare Financial Italy BPO
128 Unicredit Financial Italy UNI
129 Mediobanca Financial Italy MED
130 ING Financial Netherlands ING
131 Rabobank Financial Netherlands RAB
132 Banco Comercial Port. Financial Portugal BCP
133 Santander Financial Spain SAN
134 BBVA Financial Spain BBV
135 Royal Bank of Scot. Financial UK RBS
136 HSBC Bank Financial UK HSB
137 Barclays Bank Financial UK BAB
138 Lloyds Bank Financial UK LLB
139 Standard Chartered Financial UK SCH
140 UBS Financial Switzerland UBS
141 Credit Suisse Financial Switzerland CSU
142 Austria Sovereign Austria AUT
143 Belgium Sovereign Belgium BEL
144 France Sovereign France FRA
145 Germany Sovereign Germany GER
146 Ireland Sovereign Ireland IRE
147 Italy Sovereign Italy ITA
148 Netherlands Sovereign Netherlands NED
149 Portugal Sovereign Portugal POR
150 Spain Sovereign Spain ESP
151 UK Sovereign UK UK
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8 Appendix B

The following graphs show the estimated connectedness when only three factors are used
(non financial, financial and sovereign).

Figure 7: Variance decomposition of a shock in the global factor with and without block
factors.

(a) Variance Decomposition (no block factors)

(b) Variance Decomposition (block factors)

Note: From index 0 to 108 are European industry, index 109 to 141 are Financial institutions and, 142 to
151 are Sovereigns. See Appendix A for institution index and name correspondence.
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Figure 8: Variance decomposition of a shock in the idiosyncratic components with and
without block factors

(a) Connectedness (no block factors) (b) Connectedness (block factors)

(c) Financials and sovereigns (no block factors) (d) Financials and sovereigns (block factors)
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Figure 9: This figure compares the variance decomposition of a shock in the idiosyncratic
components for sovereigns only with and without block factors. See Appendix A for institu-
tion index and name correspondence.

(a) Sovereign Only (no block factors) (b) Sovereign Only (block factors)

Figure 10: Variance decomposition of a shock in each block factor

Note: This figure depicts variance component due to a shock in the three (3) block factors.
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Figure 11: Variance decomposition of a shock to global and block factors

Note: This figure depicts variance component due to a shock to the three (3) block factors and the global
factor.
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